How to Write Linear Equations? (+FREE Worksheet!)

In this article, you learn how to write the equation of the lines by using their slope and one point or using two points on the line.

How to Write Linear Equations? (+FREE Worksheet!)

Related Topics

Step by step guide to writing linear equations

  • The equation of a line in slope intercept form is: \(\color{blue}{y=mx+b}\)
  • Identify the slope.
  • Find the \(y\)–intercept. This can be done by substituting the slope and the coordinates of a point \((x, y)\) on the line.

The Absolute Best Books to Ace Pre-Algebra to Algebra II

Original price was: $89.99.Current price is: $49.99.

Writing Linear Equations – Example 1:

What is the equation of the line that passes through \((1, -2)\) and has a slope of \(6\)?

Solution:

The general slope-intercept form of the equation of a line is \(y=mx+b\), where \(m\) is the slope and \(b\) is the \(y\)-intercept.
By substitution of the given point and given slope, we have: \(-2=(6)(1)+b → -2=6+b \)
So, \(b= -2-6=-8\), and the required equation is \(y=6x-8\).

Writing Linear Equations – Example 2:

Write the equation of the line through \((1, 1)\) and \((-1, 3)\).

Solution:

Slop \(= \frac{y_{2}- y_{1}}{x_{2} – x_{1} }=\frac{3- 1}{-1- 1}=\frac{2}{-2}=-1 → m=-1\)
To find the value of \(b\), you can use either point. The answer will be the same: \(y=-x+b \)
\((1,1) →1=-1+b→ 1+1=b → b=2\)
\((-1,3)→3=-(-1)+b→3-1=b → b=2\)
The equation of the line is: \(y=-x+2\)

Writing Linear Equations – Example 3:

What is the equation of the line that passes through \((2,–2)\) and has a slope of \(7\)?

Solution:

The general slope-intercept form of the equation of a line is \(y=mx+b\), where \(m\) is the slope and \(b\) is the \(y-\)intercept.
By substitution of the given point and given slope, we have: \(-2=(7)(2)+b → -2=14+b \)
So, \(b= –2-14=-16\), and the required equation is \(y=7x-16\).

The Best Book to Help You Ace Pre-Algebra

Original price was: $24.99.Current price is: $14.99.
Satisfied 92 Students

Writing Linear Equations – Example 4:

Write the equation of the line through \((2,1)\) and \((-1,4)\).

Solution:

Slop \(= \frac{y_{2}- y_{1}}{x_{2} – x_{1} }=\frac{4- 1}{-1- 2}=\frac{3}{-3}=-1 → m= -1\)
You can use either point to find the value of \(b\). The answer will be the same: \(y= -x+b \)
\( (2,1) →1=-2+b→1+2=b → b=3\)
\( (-1,4)→4=-(-1)+b→4-1=b → b=3\)
The equation of the line is: \(y=-x+3\)

Exercises for Writing Linear Equations

Write the slope–intercept form of the equation of the line through the given points.

  1. \(\color{blue}{through: (– 4, – 2), (– 3, 5)}\)
  2. \(\color{blue}{through: (5, 4), (– 4, 3) }\)
  3. \(\color{blue}{through: (0, – 2), (– 5, 3) }\)
  4. \(\color{blue}{through: (– 1, 1), (– 2, 6) }\)
  5. \(\color{blue}{through: (0, 3), (– 4, – 1) }\)
  6. \(\color{blue}{through: (0, 2), (1, – 3) }\)

Download Writing Linear Equations Worksheet

  1. \(\color{blue}{y = 7x + 26}\)
  2. \(\color{blue}{y = \frac{1}{9} x + \frac{31}{9}}\)
  3. \(\color{blue}{y =\space – x – 2}\)
  4. \(\color{blue}{y =\space –5x – 4}\)
  5. \(\color{blue}{y = x + 3}\)
  6. \(\color{blue}{y =\space – 5x + 2}\)

The Greatest Books for Students to Ace the Algebra

Original price was: $29.99.Current price is: $19.99.
Original price was: $29.99.Current price is: $19.99.
Original price was: $29.99.Current price is: $19.99.
Original price was: $29.99.Current price is: $19.99.

Related to This Article

What people say about "How to Write Linear Equations? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

Leave a Reply

X
45% OFF

Limited time only!

Save Over 45%

Take It Now!

SAVE $40

It was $89.99 now it is $49.99

The Ultimate Algebra Bundle: From Pre-Algebra to Algebra II