How to Use the Law of Cosines to Find Angle Measure?
If we know the sizes of the three sides of the triangle, we can use the law of cosines to find the size of each angle of the triangle. In this guide, you will learn more about the law of cosines.
![How to Use the Law of Cosines to Find Angle Measure?](https://www.effortlessmath.com/wp-content/uploads/2023/01/Use-the-Law-of-Cosines-to-Find-Angle-Measure-512x240.jpg)
Step-by-step guide to using the law of cosines to find angle measure
The law of cosine says that the square of each side of a triangle is equal to the difference between the sum of squares of the other two sides and twice the product of other sides and the cosine angle included between them.
Let \(a, b,\) and \(c\) be the lengths of the three sides of a triangle and \(A, B,\) and \(C\) be the three angles of the triangle. Then, the law of cosine states that:
- \(\color{blue}{a^2=b^2+c^2-2bc.\:cos\:A}\)
- \(\color{blue}{b^2=\:c^2\:+\:a^2\:-\:2ca·\:cosB}\)
- \(\color{blue}{c^2=\:a^2+\:b^2-\:2ab·\:cosC}\)
If we know the sizes of the three sides of the triangle, we can use the law of cosines to find the size of each angle of the triangle. These formulas can be used to find the cosine of any angle of \(∆\: ABC\):
- \(\color{blue}{cos\:A=\frac{\:b^2+c^2-a^2}{2bc}}\)
- \(\color{blue}{cos\:B=\:\frac{a^2+c^2-b^2}{2ac}}\)
- \(\color{blue}{cos\:C=\:\frac{a^2+b^2-c^2}{2ab}}\)
Using the Law of Cosines to Find Angle Measure – Example 1:
In \(ABC\) triangle, \(a=12,\:b=8,\:c=6\). Find the angle \(B\).
Solution:
Write the law of cosines in terms of \(cos B\): \(cos\:B=\:\frac{a^2+c^2-b^2}{2ac}\)
\(cos\:B=\frac{12^2+6^2-8^2}{2\times 12\times 6}\)
\(cos B =0.8\)
\(B= 36.33^{\circ }\)
Exercises for Using the Law of Cosines to Find Angle Measure
- In \(∆\:ABC\), \(a=25,\:b=10,\:c=18\). Find the angle \(A\).
- In \(∆\:ABC\), \(a=9,\:b=8,\:c=5\). Find the angle \(C\).
![This image has an empty alt attribute; its file name is answers.png](https://www.effortlessmath.com/wp-content/uploads/2019/12/answers.png)
- \(\color{blue}{123.94^{\circ \:\:}}\)
- \(\color{blue}{33.55^{\circ }}\)
Related to This Article
More math articles
- 5th Grade WVGSA Math Worksheets: FREE & Printable
- Hyperbola in Standard Form and Vertices, Co– Vertices, Foci, and Asymptotes of a Hyperbola
- 6th Grade Common Core Math Practice Test Questions
- A Deep Dive Into The World of Vector-Valued Function
- The Ultimate SSAT Upper Level Math Formula Cheat Sheet
- Narrowing Down to One Variable with the Help of Implicit Differentiation
- Top 10 STAAR Grade 8 Math Books: A Comprehenisve Review
- 5th Grade IAR Math Practice Test Questions
- 3rd Grade WVGSA Math Worksheets: FREE & Printable
- Top 10 Tips to ACE the ISEE Math Test
What people say about "How to Use the Law of Cosines to Find Angle Measure? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.