The Unit Circle
A unit circle from the name itself defines a circle of unit radius. In the following guide, you will learn more about the unit circle.

The location of a point that is a distance of one unit from a fixed point is called a unit circle.
Related Topics
A step-by-step guide to the unit circle
A unit circle is a circle with a radius of \(1\) unit. The unit circle is generally shown on the Cartesian coordinate plane.
The unit circle is represented algebraically using the second-degree equation with two variables \(x\) and \(y\).
The unit circle is used in trigonometry and is useful for finding the values of the trigonometric ratios of sine, cosine, and tangent.
Equation of a unit circle
The general equation of a circle is \((x-a)^2+(y-b)^2=r^2\), which represents a circle having the center \((a, b)\) and the radius \(r\). This equation of a circle is simplified to show the equation of a circle.
A unit circle is formed with its center at the point\((0, 0)\), which is the origin of the coordinate axes and a radius of \(1\) unit. So the equation of the unit circle is:
\(\color{blue}{x^2+y^2=1}\)
Note: the above equation satisfies all the points lying on the circle across the four quadrants.
Finding trigonometric functions using a unit circle
Consider a right triangle located in a unit circle on the Cartesian coordinate plane. The radius of the circle represents the hypotenuse of the right triangle.
The radius vector makes an angle \(θ\) with the positive \(x\)-axis and the coordinates of the endpoint of the radius vector are \((x, y)\).
Here the values of \(x\) and \(y\) are the lengths of the base and the altitude of the right triangle. By applying this to trigonometry, we can find the values of the trigonometric ratio as follows:
\(\color{blue}{sin\:\theta=\frac{Altitude}{Hypoteuse}=\frac{y}{1}}\)
\(\color{blue}{cos\:\theta=\frac{Base}{Hypotenuse}=\frac{x}{1}}\)

Note: now we have \(sin\:\theta = y\), \(cos\:\theta = x\), and using this, we have \(tan\:\theta = \frac{y}{x}\).
Unit circle and trigonometric identities
For a right triangle placed in a unit circle in the cartesian coordinate plane, with hypotenuse, base, and altitude measuring \(1\), \(x\), \(y\) units respectively, the unit circle identities can be given as:
- \(\color{blue}{sin\:\theta =\frac{y}{1}}\)
- \(\color{blue}{cos\:\theta =\frac{x}{1}}\)
- \(\color{blue}{tan\:\theta =\frac{sin\:\theta }{cos\:\theta }=\frac{y}{x}}\)
- \(\color{blue}{sec\:\left(\theta \right)=\frac{1}{x}}\)
- \(\color{blue}{csc\:\left(\theta \right)=\frac{1}{y}}\)
- \(\color{blue}{cot\:\left(\theta \right)=\frac{cos\:\theta }{sin\:\theta }=\frac{x}{y}}\)
Unit Circle – Example 1:
Does point \(A (\frac{1}{2}, \frac{1}{2})\) lie on the unit circle?
Solution:
The equation of a unit circle is: \(x^2+y^2=1\)
Substituting \(x =\frac{1}{2}\) and \(y = \frac{1}{2}\), we get:
\(=\frac{1}{2}^2+\frac{1}{2}^2\)
\(=\frac{1}{4}+\frac{1}{4}\)
\(=\frac{2}{4}=\frac{1}{2}\)
\(≠ 1\)
Therefore \((\frac{1}{2}, \frac{1}{2})\) doesn’t lie on the unit circle.
Exercises for Unit Circle
Find the value of a function using a unit circle chart.
- \(\color{blue}{sin\:900^{^{\circ }}}\)
- \(\color{blue}{cos\:240^{^{\circ }}}\)
- \(\color{blue}{tan\:225^{^{\circ }}}\)

- \(\color{blue}{0}\)
- \(\color{blue}{-\frac{1}{2}}\)
- \(\color{blue}{1}\)
Related to This Article
More math articles
- Full-Length 8th Grade ACT Aspire Math Practice Test-Answers and Explanations
- Fundamental Theorem of Calculus: A Principle That Saves Your Life
- How to Draw Geometric Shapes with given condition?
- The Ultimate 7th Grade NYSTP Math Course (+FREE Worksheets)
- Top 10 ASVAB Math Prep Books (Our 2023 Favorite Picks)
- What Level of Math is Tested on the PSAT/NMSQT?
- Properties of Limits
- 5th Grade MCAS Math FREE Sample Practice Questions
- How to Graph Functions
- Using Number Lines to Add Two Integers with Different Signs
What people say about "The Unit Circle - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.