Understanding the Integral Test for Series Convergence
The Integral Test is a powerful method for determining the convergence or divergence of an infinite series. It compares the series to an improper integral of a related function. For a series \(\sum a_n\), if \(f(x)\) is a continuous, positive, decreasing function where \(a_n = f(n)\), the convergence of the integral \(\ \int_1^\infty f(x) \, dx \) determines the behavior of the series. If the integral converges, so does the series; if the integral diverges, the series diverges as well. This test is particularly useful when the terms of the series resemble a simple function.
The Integral Test is used to determine the convergence or divergence of an infinite series by comparing it to an improper integral. If you have a series \(\sum a_n\), where \(a_n = f(n)\) and \(f(x)\) is a continuous, positive, and decreasing function for \(\geq 1\), you can apply the Integral Test. The test compares the series to the improper integral of \(f(x)\) over the interval \([1, \infty)\): \(\int_1^\infty f(x) \, dx\)
- If the integral converges, the series also converges.
- If the integral diverges, the series also diverges.
The test is particularly useful for series where the terms resemble well-known functions that are easy to integrate, such as exponential or polynomial terms. However, if the function doesn’t meet the criteria of being positive, continuous, and decreasing, the test cannot be applied.
Here are two more examples demonstrating the Integral Test:
1. Converging Example:
Series: \(\sum_{n=1}^{\infty} \frac{e^{-n}}{n}\)
Function: \(f(x) = \frac{e^{-x}}{x}\)
Apply the Integral Test: Evaluate the integral: \(\int_1^\infty \frac{e^{-x}}{x} \, dx\)
This integral converges because the function \(\frac{e^{-x}}{x}\) decays rapidly for large \(x\). Therefore, the series \(\sum_{n=1}^{\infty} \frac{e^{-n}}{n}\) converges.
2. Diverging Example:
Series: \(\sum_{n=1}^{\infty} \frac{1}{n \ln(n)}\)
Function: \(f(x) = \frac{1}{x \ln(x)}\)
Apply the Integral Test: Evaluate the integral: \(\int_2^\infty \frac{1}{x \ln(x)} \, dx\)
This is a known divergent integral (it diverges logarithmically). Therefore, the series \(\sum_{n=1}^{\infty} \frac{1}{n \ln(n)}\) diverges.
Related to This Article
More math articles
- The Complete Guide to 5 Best GED Math Study Guides
- How to Using Decimals, Grid Models, and Fractions to Represent Percent
- 6th Grade RISE Math Worksheets: FREE & Printable
- Number Properties Puzzle – Challenge 15
- How to Differentiate Trigonometric Reciprocals
- Top 5 Best Math YouTube Channels for High School Students
- GED Calculator Guide: Learn How To Use The TI-30XS
- Absolute Value Definition
- Tri-Fractional Operations: How to Add and Subtract Three Fractions with Different Denominators
- How to Compare Money Amounts
What people say about "Understanding the Integral Test for Series Convergence - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.