The Intermediate Value Theorem
The Intermediate Value Theorem ensures that for a continuous function, any value between its outputs at two points is also achieved somewhere within that interval. It confirms the existence of solutions without pinpointing their exact location.
[include_netrun_products_block from-products="product/6-south-carolina-sc-ready-grade-3-math-practice-tests/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{url}/?ajax-add-to-cart={id}" product-item-button-custom-url-if-not-salable="{productUrl} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"] [include_netrun_products_block from-products="product/6-south-carolina-sc-ready-grade-3-math-practice-tests/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{url}/?ajax-add-to-cart={id}" product-item-button-custom-url-if-not-salable="{productUrl} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"]
When the function is continuous, it means there are no jumps, breaks, or gaps in its graph. In this context, the Intermediate Value Theorem can be applied. The continuity ensures that for any value between the function’s outputs at two points in a given interval, there is at least one corresponding input within that interval where the function takes that value. This continuity is crucial for the Intermediate Value Theorem as it guarantees that the function smoothly transitions through all values between its outputs at the interval’s endpoints, thus making the theorem applicable.
to use this theorem, we can follow these steps:
To use the Intermediate Value Theorem (IVT), you can follow these basic steps:
- Verify Continuity: Ensure the function \( f(x) \) is continuous on the closed interval \( [a, b] \).
- Identify Endpoints: Evaluate the function at the endpoints of the interval, \( f(a) \) and \( f(b) \).
- Check Intermediate Value: Determine if the value you’re looking for, say \( d \), lies between \( f(a) \) and ( f(b) ).
- Conclude Existence: If \( d \) is between \( f(a) \) and \( f(b) \), then IVT guarantees that there is at least one \( c \) in \( [a, b] \) such that \( f(c) = d \).
Here is an example:
Let’s consider the function \( f(x) = x^3 – x \) on the interval \([-2, 2]\).
- Check Continuity:
- \( f(x) = x^3 – x \) is a polynomial, and polynomials are continuous everywhere. Therefore, \( f(x) \) is continuous on \([-2, 2]\).
- Choose a Value \( d \) Between \( f(a) \) and \( f(b) \):
- Let’s calculate \( f(-2) \) and \( f(2) \):
- \( f(-2) = (-2)^3 – (-2) = -8 + 2 = -6 \)
- ( f(2) = 2^3 – 2 = 8 – 2 = 6 )
- Choose \( d = 0 \), which clearly lies between \(-6\) and \(6\).
- Apply IVT:
- Since \(0\) is between \( f(-2) = -6 \) and \( f(2) = 6 \), and \( f(x) \) is continuous on \([-2, 2]\), the IVT guarantees there exists at least one \( c \) in \([-2, 2]\) such that \( f(c) = 0 \).
- Finding \( c \):
- To find the actual value of \( c \), solve \( x^3 – x = 0 \).
- Factoring out \( x \), we get \( x(x^2 – 1) = 0 \), so the roots are \( x = 0, 1, -1 \).
- All these roots are within the interval \([-2, 2]\), satisfying the theorem.
In this example, the IVT tells us that the function \( f(x) = x^3 – x \) takes on every value between \(-6\) and \(6\) at least once in the interval \([-2, 2]\), including the value \(0\).
Related to This Article
More math articles
- How to Find the Area and Perimeter of the Semicircle?
- Best Calculator For 11th Grade Students
- How to Identify Real Numbers
- Top 10 CLEP College Mathematics Prep Books (Our 2023 Favorite Picks)
- Getting Better at Math: Realistic Tips and Suggestions
- Using Distributive Property to Factor Variable Expressions
- The Ultimate Common Core Algebra 1 Course (+FREE Worksheets)
- What Kind of Math Is on the TSI Test?
- FREE 7th Grade Common Core Math Practice Test
- Top 10 4th Grade FSA Math Practice Questions


























What people say about "The Intermediate Value Theorem - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.