Pythagorean Identities
The Pythagorean theorem can be applied to the trigonometric ratios that give rise to the Pythagorean identity. In this step-by-step guide, you will learn the concept of Pythagorean identity.
In mathematics, identity is an equation that holds for all possible values. An equation that contains trigonometric functions and is true for any value that replaces the variable is called trigonometric identity.
Related Topics
A step-by-step guide to Pythagorean identities
Pythagorean identities are important identities in trigonometry derived from the Pythagorean theorem. These identities are used to solve many trigonometric problems in which a trigonometric ratio is given and other ratios are found.
The fundamental Pythagorean identity shows the relationship between \(sin\) and \(cos\), and is the most common Pythagorean identity that says:
- \(\color{blue}{sin^2\theta +cos^2\theta =1}\) (which gives the relation between \(sin\) and \(cos\))
There are two other Pythagorean identities as follows:
- \(\color{blue}{sec^2\theta -tan^2\theta =1}\) (which gives the relation between \(sec\) and \(tan\))
- \(\color{blue}{csc^2\theta -cot^2\theta =1}\) (which gives the relation between \(csc\) and \(cot\))
Pythagorean trig identities
All Pythagorean trig identities are listed below.
- \(\color{blue}{sin^2\theta +cos^2\theta =1}\)
- \(\color{blue}{1+tan^2\theta =sec^2\theta}\)
- \(\color{blue}{1+cot^2\theta =cosec^2\theta}\)
Each of them can be written in different forms with algebraic operations. That is, any Pythagorean identity can be written in three ways as follows:
- \(\color{blue}{sin^2θ + cos^2θ = 1 ⇒ 1 – sin^2θ = cos^2 θ ⇒ 1 – cos^2θ = sin^2θ}\)
- \(\color{blue}{sec^2θ\ – tan^2θ = 1 ⇒ sec^2θ = 1 + tan^2θ ⇒ sec^2θ – 1 = tan^2θ}\)
- \(\color{blue}{csc^2θ\ – cot^2θ = 1 ⇒ csc^2θ = 1 + cot^2θ ⇒ csc^2θ – 1 = cot^2θ}\)
Pythagorean Identities – Example 1:
In a right-angled triangle \(ABC\), angle \(C=90^{\circ }\), \(BAC = θ\), \(sin\:\theta = \frac{4}{5}\). Find the value of \(cos\:\theta\).
Solution:
Use the identity \(sin^2θ + cos^2θ =1\)
\((\frac{4}{5})^2+cos^2θ = 1\)
\(cos^2θ=1-(\frac{4}{5})^2\)
\(cos\:\theta ={\sqrt{1-\left(\frac{4}{5}\right)^2}}\)
\(=\sqrt{\frac{9}{25}}\)
\(=\frac{3}{5}\)
Exercises for Pythagorean Identities
- Suppose that \(sec\:\theta =\:-\frac{29}{20}\), what is the value of \(tan\:\theta\) if it is also negative?
- If \(sin\:\theta\) and \(cos\:\theta\) are the roots of the quadratic equation \(x^2+ px +1= 0\), find \(p\).
- If \(sin\:\theta \:cos\:\theta =\frac{1}{4}\), what is the value of \(sin\:\theta \:-\:cos\:\theta\)?
- \(\color{blue}{-\frac{21}{20}}\)
- \(\color{blue}{\pm \sqrt{3}}\)
- \(\color{blue}{\frac{\sqrt{2}}{2}}\)
Related to This Article
More math articles
- THEA Math Formulas
- How to Write Linear Functions Word Problems
- PERT Math FREE Sample Practice Questions
- 4th Grade M-STEP Math Worksheets: FREE & Printable
- 4 Perfect Tablets for Note-Taking in 2024
- Marketing Math: What’s a New Customer Really Worth?
- 6th Grade PARCC Math Practice Test Questions
- The Ultimate OAE Elementary Education Math (018-019) Course (+FREE Worksheets & Tests)
- How to Represent Systems of Linear Equations Using Matrices?
- Understanding Line Segments and Their Measurements
What people say about "Pythagorean Identities - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.