How to Solve Natural Logarithms Problems? (+FREE Worksheet!)
In this blog post, you will learn more about Natural Logarithms and how to solve problems related to natural logarithms.

Related Topics
Step by step guide to solve Natural Logarithms
- A natural logarithm is a logarithm that has a special base of the mathematical constant \(e\), which is an irrational number approximately equal to \(2.71\).
- The natural logarithm of \(x\) is generally written as ln \(x\), or \(\log_{e}{x}\).
Natural Logarithms – Example 1:
Solve the equation for \(x\): \(e^x=3\)
Solution:
If \(f(x)=g(x)\),then: \(ln(f(x))=ln(g(x))→ln(e^x)=ln(3) \)
Use log rule: \(\log_{a}{x^b}=b \log_{a}{x}\), then: \(ln(e^x)=x ln(e)→xln(e)=ln(3) \)
\(ln(e)=1\), then: \(x=ln(3) \)
Best Algebra Prep Resource
Natural Logarithms – Example 2:
Solve equation for \(x\): \(ln(2x-1)=1\)
Solution:
Use log rule: \(a=\log_{b}{b^a}\), then: \(1=ln(e^1 )=ln(e)→ln(2x-1)=ln(e)\)
When the logs have the same base: \(\log_{b}{f(x)}=\log_{b}{g(x)}\), then: \(f(x)=g(x)\)
then: \(ln(2x-1)=ln(e)\), then: \(2x-1=e→x=\frac{e+1}{2}\)
Natural Logarithms – Example 3:
Solve the equation for \(x\): \(e^x=5\)
Solution:
If \(f(x)=g(x)\),then: \(ln(f(x))=ln(g(x))→ln(e^x)=ln(5) \)
Use log rule: \(\log_{a}{x^b}=b \log_{a}{x}\), then: \(ln(e^x)=x ln(e)→xln(e)=ln(5) \)
\(ln(e)=1\), then: \(x=ln(5) \)
Natural Logarithms – Example 4:
Solve equation for \(x\): \(ln(5x-1)=1\)
Solution:
Use log rule: \(a=\log_{b}{b^a}\), then: \(1=ln(e^1 )=ln(e)→ln(5x-1)=ln(e)\)
When the logs have the same base: \(\log_{b}{f(x)}=\log_{b}{g(x)}\), then: \(f(x)=g(x)\)
then: \(ln(5x-1)=ln(e)\), then: \(5x-1=e→x=\frac{e+1}{5}\)
Exercises to practice Natural Logarithms
The Perfect Book to Ace the College Algebra Course
Solve each equation for \(x\).
- \(\color{blue}{e^x=3}\)
- \(\color{blue}{e^x=4}\)
- \(\color{blue}{e^x=8}\)
- \(\color{blue}{ln x=6}\)
- \(\color{blue}{ln (ln x)=5}\)
- \(\color{blue}{e^x=9}\)
- \(\color{blue}{ln(2x+5)=4}\)
- \(\color{blue}{ln(2x-1)=1}\)

Answers
- \(\color{blue}{x=ln 3}\)
- \(\color{blue}{x=ln 4,x=2ln(2)}\)
- \(\color{blue}{x=ln 8,x=3ln(2)}\)
- \(\color{blue}{x=e^6}\)
- \(\color{blue}{x=e^{e^5}}\)
- \(\color{blue}{x=ln 9,x=2ln(3)}\)
- \(\color{blue}{x=\frac{e^4-5}{2}}\)
- \(\color{blue}{x=\frac{e+1}{2}}\)
The Best Books You Need to Ace Algebra
Related to This Article
More math articles
- How to Factor Polynomials?
- The Rules of Integral: Complex Subject Made Easy
- Ratio, Proportion and Percentages Puzzle -Critical Thinking 10
- How is the GED Math Scored?
- ISEE Math- Test Day Tips
- How to Find Missing Sides and Angles of a Right Triangle? (+FREE Worksheet!)
- How to Make Inferences from Data? (+FREE Worksheet!)
- Using a Table to Write down a Two-Variable Equation
- FREE 6th Grade MAP Math Practice Test
- 7th Grade Common Core Math Practice Test Questions
What people say about "How to Solve Natural Logarithms Problems? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.