How to Multiply Matrix? (+FREE Worksheet!)
Here is a step-by-step guide to multiply matrices. The exercises can help you measure your knowledge of matrix multiplication.
Related Topics
Step by step guide to multiply matrices
- Step 1: Make sure that it’s possible to multiply the two matrices (the number of columns in the 1st one should be the same as the number of rows in the second one.)
- Step 2: The elements of each row of the first matrix should be multiplied by the elements of each column in the second matrix.
- Step 3: Add the products.
Matrix Multiplication – Example 1:
\(\begin{bmatrix}-5 & -5 \\-1 & 2 \end{bmatrix}\)\(\begin{bmatrix}-2 & -3 \\3 & 5 \end{bmatrix}\)
Solution:
Multiply the rows of the first matrix by the columns of the second matrix. \(\begin{bmatrix}(-5)(-2)+(-5)(3) & (-5)(-3)+(-5)(5) \\(-1)(-2)+(2)(3) & (-1)(-3)+(2)(5) \end{bmatrix}= \begin{bmatrix}(10)+(-15) & (15)+(-25) \\(2)+(6) & (3)+(10) \end{bmatrix}=\begin{bmatrix}-5 & -10 \\8 & 13 \end{bmatrix}\)
The Absolute Best Books to Ace Pre-Algebra to Algebra II
Matrix Multiplication – Example 2:
\(\begin{bmatrix}-4 & -6&-6 \\0 & 6&3 \end{bmatrix}\begin{bmatrix}0 \\-3 \\0 \end{bmatrix}\)
Solution:
Multiply the rows of the first matrix by the columns of the second matrix. \(\begin{bmatrix}(-4)(0)+(-6)(-3)+(-6)(0) \\(0)(0)+(6)(-3)+(3)(0) \end{bmatrix}=\begin{bmatrix}0+18+0 \\0-18+0 \end{bmatrix}=\begin{bmatrix}18 \\-18 \end{bmatrix}\)
Matrix Multiplication – Example 3:
\(\begin{bmatrix}1 & 3 \\2 & 4 \end{bmatrix}\)\(\begin{bmatrix}2 &4 \\-2 & 1 \end{bmatrix}\)
Solution:
\(\begin{bmatrix}(1) (2)+(3)(-2) & (1) (4)+(3) (1) \\(2) (2)+ (4)(-2) & (2) (4)+(4) (1) \end{bmatrix}=\begin{bmatrix}(2)+(-6) & (4)+(3) \\(4)+ (-8) & (8)+(4) \end{bmatrix}=\begin{bmatrix}-4 & 7 \\-4 & 12 \end{bmatrix}\)
The Best Book to Help You Ace Pre-Algebra
Matrix Multiplication – Example 4:
\(\begin{bmatrix}2 & -1&-1 \\3 & 1&5 \end{bmatrix}\begin{bmatrix}-2 \\-1 \\4 \end{bmatrix}\)
Solution:
Multiply the rows of the first matrix by the columns of the second matrix. \(\begin{bmatrix}(2)(-2)+(-1)(-1)+(-1) (4)\\(3)(-2)+(1)(-1)+(5) (4) \end{bmatrix}=\begin{bmatrix}(-4)+(1)+(-4)\\(-6)+(-1)+(20) \end{bmatrix}=\begin{bmatrix}-7 \\13 \end{bmatrix}\)
Exercises for Multiplying Matrix
Solve.
- \(\color{blue}{\begin{bmatrix}0 & 2 \\-2 & -5 \end{bmatrix}\begin{bmatrix}6 & -6 \\3 & 0 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}3 & -1 \\-3 & 6\\-6&-6 \end{bmatrix}\begin{bmatrix}-1 & 6 \\5 & 4\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}0 & 5 \\-3 & 1\\-5&1 \end{bmatrix}\begin{bmatrix}-4 & 4 \\-2 & -4\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}5 & 3&5 \\1 & 5&0 \end{bmatrix}\begin{bmatrix}-4 & 2 \\-3 & 4\\3&-5 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}4 & 5 \\-4 & 6\\-5&-6 \end{bmatrix}\begin{bmatrix}4 & 6 \\6& 2\\-4&1 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}-2 & -6 \\-4 & 3\\5&0 \\4&-6\end{bmatrix}\begin{bmatrix}2 & -2&2 \\-2 &0&-3 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}6 & 0 \\-27 & 12 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}-8 & 14 \\33 & 6\\ -24&-60\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}-10 & -20 \\10 & -16\\ 18&-24\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}-14 & -3 \\-19 & 22 \end{bmatrix}}\)
- \(\color{blue}{Undefined}\)
- \(\color{blue}{\begin{bmatrix}8 & 4&14\\-14 & 8&-17\\10&-10&10 \\20&-8&26\end{bmatrix}}\)
The Greatest Books for Students to Ace the Algebra
Related to This Article
More math articles
- How to Ace the GED Math Formulas
- How to Get a PhD in Math
- What are the Undefined Limits: Defining from Tables and Graphs
- Best Digital Writing Pads for Online Teaching in 2024
- How to Choose a Model to Subtract Fractions with Like Denominators
- How to Solve Systems of Equations Word Problems? (+FREE Worksheet!)
- Definition and Properties of Inverse Trigonometric Functions
- The Ultimate ISEE Upper-Level Math Course (+FREE Worksheets & Tests)
- How to Find the Volume and Surface Area of a Triangular Pyramid?
- 7th Grade MCAS Math Practice Test Questions
What people say about "How to Multiply Matrix? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.