Innovative Forecasts: Population Models are Predicting the Future
Utilizing the population models:
Let \(P(t)\) be the population at year \(t\), with \(P(0)\) being the population in \(2000\). The differential equation for population growth is:
\(\frac{dP}{dt} = 0.0002 \cdot P(t)\),
where \(0.0002\) represents the \(0.02\%\) growth rate.
Solve the differential equation using separation of variables and integration:
\(\int \frac{1}{P} dP = \int {0.0002} dt\),
which yields the solution:
\(P(t) = P(0) e^{0.0002t}\).
Every ten years, the population increases by an additional \(2\%\). This can be modeled as:
\(P(10) = 1.02 \cdot P(0) e^{0.0002} \cdot 10\),
\(P(20) = 1.02 \cdot P(10) e^{0.0002} \cdot 10\).
Substituting back, the population after \(20 years is:
\(P(20) = 1.02^2 \cdot P(0) e^{0.0002} \cdot 20\).
This formula gives the population in the year \(2020\) considering both the continuous growth and the decade bonuses.
Assuming the initial population in \(2000 ( P(0) )\) is \(1,000,000\), the population in \(2020\) is calculated as:
\(P(20) = 1.02^2 \cdot P(0) e^{0.0002 \cdot 20\).
Substitute \(P(0) = 1,000,000\) into the formula:
\(P(20) = 1.02^2 \cdot 1,000,000 \cdot e^{0.0002} \cdot 20\).
Given an initial population of \(1,000,000\) in the year \(2000, the population in \(2020\) is calculated as:
\(P(20) = 1.02^2 \times 1,000,000 \times e^{0.0002 \times 20} \approx 1,044,570\).
This result accounts for the continuous growth rate of \(0.02\%\) per year and an additional \(2\%\) bonus every ten years.
Related to This Article
More math articles
- How to Find Percent of Increase and Decrease? (+FREE Worksheet!)
- How to Get ALEKS Done Fast?
- How is the ParaPro Test Scored?
- Top 10 Math Books for 8th Graders: A Roadmap to Excellence
- A Deep Dive Into the World Derivative of Polar Coordinates
- How to Solve Trig Ratios of General Angles? (+FREE Worksheet!)
- Best CLEP College Mаthеmаtiсѕ Prер Bооkѕ
- 5th Grade MEAP Math Practice Test Questions
- What are the four Branches of Mathematics?
- 4th Grade STAAR Math FREE Sample Practice Questions




















What people say about "Innovative Forecasts: Population Models are Predicting the Future - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.