How to Solve Infinite Geometric Series? (+FREE Worksheet!)

Learn how to solve the Infinite Geometric Series using the following step-by-step guide and examples.

How to Solve Infinite Geometric Series? (+FREE Worksheet!)

Related Topics

Step by step guide to solve Infinite Geometric Series

  • Infinite Geometric Series: The sum of a geometric series is infinite when the absolute value of the ratio is more than \(1\).
  • Infinite Geometric Series formula: \(\color{blue}{S= \sum_{i=0}^ \infty a_{i}r^i=\frac{a_{1}}{1-r}}\)

Infinite Geometric Series – Example 1:

Evaluate infinite geometric series described. \(S= \sum_{i=1}^ \infty 9^{i-1}\)

Solution:

Use this formula: \(\color{blue}{S= \sum_{i=0}^ \infty a_{i}r^i=\frac{a_{1}}{1-r}} → S= \sum_{i=1}^ \infty 9^{i-1}=\frac{1}{1-9}=\frac{1}{-8}=-\frac{1}{8}\)

The Absolute Best Book to Ace Pre-Algebra

Original price was: $29.99.Current price is: $14.99.
Satisfied 1 Students

Infinite Geometric Series – Example 2:

Evaluate the infinite geometric series described. \(S= \sum_{k=1}^ \infty (\frac{1}{4})^{k-1}\)

Solution:

Use this formula: \(\color{blue}{S= \sum_{i=0}^ \infty a_{i}r^i=\frac{a_{1}}{1-r}} → S= \sum_{k=1}^ \infty (\frac{1}{4})^{k-1}=\frac{1}{1-\frac{1}{4}}=\frac{1}{\frac{3}{4}}=\frac{4}{3}\)

Infinite Geometric Series – Example 3:

Evaluate the infinite geometric series described. \(S= \sum_{i=1}^ \infty 8^{i-1}\)

Solution:

Use this formula: \(\color{blue}{S= \sum_{i=0}^ \infty a_{i}r^i=\frac{a_{1}}{1-r}} → S= \sum_{i=1}^ \infty 8^{i-1}=\frac{1}{1-8}=\frac{1}{-7}=-\frac{1}{7}\)

Infinite Geometric Series – Example 4:

Evaluate the infinite geometric series described. \(S= \sum_{k=1}^ \infty (\frac{1}{2})^{k-1}\)

Solution:

Use this formula: \(\color{blue}{S= \sum_{i=0}^ \infty a_{i}r^i=\frac{a_{1}}{1-r}} → S= \sum_{k=1}^ \infty (\frac{1}{2})^{k-1}=\frac{1}{1-\frac{1}{2}}=\frac{1}{\frac{1}{2}}=2\)

Exercises for Solving Infinite Geometric Series

The Absolute Best Book to Ace the College Algebra Course

Original price was: $29.99.Current price is: $19.99.

Determine if each geometric series converges or diverges.

  • \(\color{blue}{a_{1} = –3, r = 4}\)
  • \(\color{blue}{a_{1}= 5.5, r = 0.5}\)
  • \(\color{blue}{a_{1} = –1, r = 3}\)
  • \(\color{blue}{81 + 27 + 9 + 3 …,}\)
  • \(\color{blue}{–3 + \frac{12}{5} – \frac{48}{25} + \frac{192}{125} …,}\)
  • \(\color{blue}{\frac{128}{3125} – \frac{64}{625} + \frac{32}{125} – \frac{16}{25 }…,}\)

Answers

  • \(\color{blue}{Diverges}\)
  • \(\color{blue}{Converges}\)
  • \(\color{blue}{Diverges}\)
  • \(\color{blue}{Converges}\)
  • \(\color{blue}{Converges}\)
  • \(\color{blue}{Diverges}\)

The Best Books to Ace Algebra

Original price was: $29.99.Current price is: $14.99.
Original price was: $29.99.Current price is: $14.99.
Satisfied 1 Students
Original price was: $24.99.Current price is: $14.99.
Satisfied 92 Students
Original price was: $24.99.Current price is: $15.99.
Satisfied 125 Students

Related to This Article

What people say about "How to Solve Infinite Geometric Series? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

Leave a Reply

X
45% OFF

Limited time only!

Save Over 45%

Take It Now!

SAVE $40

It was $89.99 now it is $49.99

The Ultimate Algebra Bundle: From Pre-Algebra to Algebra II