How to Write Equation of Parallel and Perpendicular Lines?
In this step-by-step guide, you will learn about defining parallel and perpendicular lines and writing their equations.
Perpendicular and parallel lines have one common characteristic between them. They both consist of straight lines.
Related Topics
A step-by-step guide to parallel and perpendicular lines
If two straight lines are on the same plane and if they never intersect, they are called parallel lines. The symbol \(||\) is used to represent parallel lines.
For example, \(AB || DF\) means line \(AB\) is parallel to line \(DF\). On the other hand, when two lines intersect at a \(90\)-degree angle, they are known as perpendicular lines. Perpendicular lines are denoted by the symbol \(⊥\). For example, \(PQ ⊥ RS\) means line \(PQ\) is perpendicular to line \(RS\).
Properties of parallel lines
- Parallel lines are always equidistant from each other.
- They never meet at any common point.
- They lie in the same plane.
Properties of perpendicular lines
- Perpendicular lines always intersect at \(90°\).
- All perpendicular lines can be called intersecting lines, but not all intersecting lines can be called perpendicular because they must intersect at right angles.
Equations of parallel and perpendicular lines
The equation of a straight line is represented as \(y=ax+b\) which defines the slope and the \(y\)-intercept. Here \(a\) represents the slope of the line. Since two parallel lines never intersect and have the same slope, their slope is always equal.
Perpendicular lines do not have the same slope. The slope of one line is the negative reciprocal of the other line. This can be expressed mathematically as \(m_1 × m_2 = -1\), where \(m_1\) and \(m_2\) are the slopes of two lines that are perpendicular.
Hence, it can be said that if the slope of two lines is the same, they are known as parallel lines, while if the slope of two given lines is negatively reciprocal to each other, they are called perpendicular lines.
Parallel and Perpendicular Lines – Example 1:
If one line passes through the points \((0, –4)\) and \((–1, –7)\) and another line passes through the points \((3, 0)\) and \((–3, 2)\). Are these lines parallel or perpendicular?
Solution:
First, find the slope of each line: \(\color{blue}{slope=\frac{y_2-y_1}{x_2-x_1}}\)
\(m_1 = \frac{(-7-(-4))}{(-1-0)}=\frac{-3}{-1}= 3\)
\(m_2 = \frac{(2-0)}{(-3-3)}= \frac{2}{-6}= \frac{-1}{3}\)
Since, \(m_1 ≠ m_2\), therefore, lines are not parallel.
\(m_1×m_2 = 3×(-\frac{1}{3})= -1\)
Therefore, the two lines are perpendicular.
Exercises for Parallel and Perpendicular Lines
- What is the equation for the line that is perpendicular to \(4x−3y=6\) through the point \((4,6)\)?
- Find the equation of the line that passes through the point \(A=(-1,2)\) and is parallel to the line \(y=2x-3\).
- Find the equation of the line that passes through the point \(A=(1,-2)\) and is perpendicular to the line \(y=3x+4\).
- Write the equation for the line that is parallel to \(y=-\frac{1}{3}x+8\) through the point \((0,-2)\).
- \(\color{blue}{y=-\frac{3}{4}x+9}\)
- \(\color{blue}{y=2x+4}\)
- \(\color{blue}{y=-\frac{1}{3}x-\frac{5}{3}}\)
- \(\color{blue}{y=-\frac{1}{3}x-2}\)
Related to This Article
More math articles
- How to Use Strip Models to Add Fractions with Like Denominators
- How to Graph Absolute Value Function?
- FREE 6th Grade SBAC Math Practice Test
- Full-Length 7th Grade PARCC Math Practice Test
- Decimals in Action: How to Master Multiplication and Division
- Tips and Tricks for Learning College Math
- FREE ISEE Upper Level Math Practice Test
- Calculating the Surface Area of Prisms and Cylinders
- FREE 6th Grade MCAS Math Practice Test
- How Is the PERT Test Scored?
What people say about "How to Write Equation of Parallel and Perpendicular Lines? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.