How to Solve Rational Exponents?
An exponential expression (also called fractional exponents) of the form \(a^m\) has a rational exponent if \(m\) is a rational number (as opposed to integers). Here, you learn more about solving rational exponents problems.
Rational exponents are exponents of numbers that are expressed as rational numbers, that is, in \(a^{\frac{p}{q}}\), \(a\) is the base, and \(\frac{p}{q}\) is the rational exponent where \(q ≠ 0\).
In rational exponents, the base must be a positive integer. Some examples of rational exponents are: \(2^{\frac{1}{3}}\), \(5^{\frac{5}{9}}\),\(10^{\frac{10}{3}}\).
Related Topics
A step-by-step guide to rational exponents
Rational exponents are defined as exponents that can be expressed in the form of \(\frac{p}{q}\), where \(q≠0\).
The general symbol for rational exponents is \(x^{\frac{m}{n}}\), where \(x\) is the base (positive number) and \(\frac{m}{n}\) is a rational power. Rational exponents can also be written as \(x^{\frac{m}{n}}\) \(=\sqrt[n]{m}\)
- \(\color{blue}{x^{\frac{1}{n}}=\sqrt[n]{x}}\)
- \(\color{blue}{x^{\frac{m}{n}}=\:\left(\sqrt[n]{x}\right)^m\:or\:\sqrt[n]{\left(x^m\right)}}\)
Rational exponents formulas
Let’s review some of the formulas for rational exponents used to solve various algebraic problems. The formula for integer exponents is also true for rational exponents.
- \(\color{blue}{a^{\frac{m}{n}}\times a^{\frac{p}{q}}=a^{\left(\frac{m}{n}+\frac{p}{q}\right)}}\)
- \(\color{blue}{a^{\frac{m}{n}}\div a^{\frac{p}{q}}=a^{\left(\frac{m}{n}-\frac{p}{q}\right)}}\)
- \(\color{blue}{a^{\frac{m}{n}}\times b^{\frac{m}{n}}=\left(ab\right)^{\frac{m}{n}}}\)
- \(\color{blue}{a^{\frac{m}{n}}\div b^{\frac{m}{n}}=\left(a\div b\right)^{\frac{m}{n}}}\)
- \(\color{blue}{a^{-\frac{m}{n}}=\left(\frac{1}{a}\right)^{\frac{m}{n}}}\)
- \(\color{blue}{a^{\frac{0}{n}}=a^0=1}\)
- \(\color{blue}{\left(a^{\frac{m}{n}}\right)^{\frac{p}{q}}=a^{\frac{m}{n}\times \frac{p}{q}}}\)
- \(\color{blue}{x^{\frac{m}{n}}=y⇔x=y^{\frac{n}{m}}}\)
Rational Exponents – Example 1:
solve. \(8^{\frac{1}{2}}\times 8^{\frac{1}{2}}\)
Use this formula to solve rational exponents: \(\color{blue}{a^{\frac{m}{n}}\times a^{\frac{p}{q}}=a^{\left(\frac{m}{n}+\frac{p}{q}\right)}}\)
\(8^{\frac{1}{2}}\times 8^{\frac{1}{2}}\) \(=8^{\left(\frac{1}{2}+\frac{1}{2}\right)}\)
\(=8^{1}=8\)
Rational Exponents – Example 2:
Solve. \(2^{\frac{1}{4}}\times 7^{\frac{1}{4}}\)
Use this formula to solve rational exponents: \(\color{blue}{a^{\frac{m}{n}}\times b^{\frac{m}{n}}=\left(ab\right)^{\frac{m}{n}}}\)
\(2^{\frac{1}{4}}\times 7^{\frac{1}{4}}\) \(=(2\times7)^{\frac{1}{4}}\)
\(=14^{\frac{1}{4}}\)
Exercise for Rational Exponents
Evaluate the following rational exponents.
- \(\color{blue}{25^{\frac{1}{2}}}\)
- \(\color{blue}{81^{\frac{5}{4}}}\)
- \(\color{blue}{(2x^{\frac{2}{3}})(7x^{\frac{5}{4}})}\)
- \(\color{blue}{8^{\frac{1}{2}}\div 8^{\frac{1}{6}}}\)
- \(\color{blue}{(\frac{16}{9})^{-\frac{1}{2}}}\)
- \(\color{blue}{\left(8x\right)^{\frac{1}{3}}\left(14x^{\frac{6}{5}}\right)}\)
- \(\color{blue}{5}\)
- \(\color{blue}{243}\)
- \(\color{blue}{14x^{\frac{23}{12}}}\)
- \(\color{blue}{2}\)
- \(\color{blue}{\frac{3}{4}}\)
- \(\color{blue}{28x^{\frac{23}{15}}}\)
Related to This Article
More math articles
- Top 10 Free Websites for Praxis Core Math Preparation
- GED Test: Everything You Need to Know
- How to Divide Polynomials Using Long Division?
- Top 10 6th Grade MEAP Math Practice Questions
- How to Scale a Function Vertically?
- Prepare for the SAT Math: The Right Combination of Hard Work and Time Management
- Top 10 GED Math Prep Books to buy! (2023 Picks)
- Top 10 8th Grade PSSA Math Practice Questions
- FREE 6th Grade Georgia Milestones Assessment System Math Practice Test
- 10 Most Common 3rd Grade OST Math Questions
What people say about "How to Solve Rational Exponents? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.