How to Multiply and Divide Complex Numbers in Polar Form?
Don't know how to multiply and divide complex numbers in polar form? In this post, you will learn how to multiply and divide complex numbers using a few simple and easy steps.
When two or more complex numbers are multiplying is a fundamental operation. Compared to the adding and subtracting of complex numbers, it is a more complicated process.
When a real number is multiplied by an imaginary number, you get a “complex number,” which is \(a+ib\).
Complex number multiplication is similar to binomial multiplication utilizing the distributive property.
Related Topics
A step-by-step guide to multiplying and dividing complex numbers in polar form
To multiply complex numbers in the polar form, follow these steps:
- When two complex numbers are multiplied in the polar form \(z_1=r_1(cos θ_1+i\sin θ_1)\) and \(z_2=r_2(cos θ_2+i\sin θ_2)\), to find out what their output is, apply the formula below: \(\color{blue}{z_1z_2=r_1 r_2[cos( θ_1 + θ_2)+i\sin ( θ_1 + θ_2)]}\)
To divide complex numbers in the polar form, follow these steps:
- In the first step, identify the components of the complex number: \(r_1\), \(r_2\), \( θ_1 \), and \( θ_2\).
- One thing to do now is to put the numbers found in Step 1 into the formula for dividing complicated numbers in the “polar” form. \(\color{blue} {\frac{z_1}{z_2}=\frac{r_1}{r_2} [cos( θ_1 – θ_2 )+i\sin ( θ_1 – θ_2)]}\)
- Make things as simple as possible.
Multiplying and Dividing Complex Numbers in Polar Form – Example 1:
Find the product of \(z_1 z_2\).
\(z_1=3 (cos(75) + i sin (75))\) and \(z_2=2 (cos(150) + i sin (150))\)
To find \(z_1 z_2\) use this formula: \(\color{blue}{z_1z_2=r_1 r_2[cos( θ_1 + θ_2)+i\sin ( θ_1 + θ_2)]}\)
\(z_1 z_2= 3\times2 [cos (75+150) + i\ sin (75+150)]\)
\(z_1 z_2\) \(= 6[cos (225) + i\ sin( 225)]\)
\(z_1 z_2\) \(=6 [cos (\frac {5π}{4}) + i\ sin (\frac {5π}{4})]\)
\(z_1 z_2\) \(=6 [-\frac{\sqrt 2}{2} + i (-\frac{\sqrt 2}{2})]\)
\(z_1 z_2\) \(=-3\sqrt {2}-3i\sqrt{2}\)
Multiplying and Dividing Complex Numbers in Polar Form – Example 2:
Find the quotient of \(\frac {z_1}{z_2}\).
\(z_1=2 (cos(210) + i sin (210))\) and \(z_2=8 (cos(30) + i sin (30))\)
To find \(\frac {z_1}{z_2}\) use this formula: \(\color{blue} {\frac{z_1}{z_2}=\frac{r_1}{r_2} [cos( θ_1 – θ_2 )+i\sin ( θ_1 – θ_2)]}\).
\(\frac{z_1}{z_2}=\frac{2}{8}[cos(210-30) + i\ sin (210-30)]\)
\(\frac{z_1}{z_2}= \frac{1}{4}[cos (180) + i\ sin (180)]\)
\(\frac{z_1}{z_2}= \frac{1}{4}[-1+0 i]\)
\(\frac{z_1}{z_2}= -\frac{1}{4}+0 i\)
\(\frac{z_1}{z_2}= -\frac{1}{4}\)
Exercises for Multiplying and Dividing Complex Numbers in Polar Form
Find each product.
- \(\color{blue}{z_1= 2\sqrt{2}[cos (145)+i sin(145)]}\) and \(\color{blue}{z_2= 2[cos (35)+i sin(35)]}\)
- \(\color{blue}{z_1= 2 [cos (215)+i sin(215)]}\) and \(\color{blue}{z_2=8 [cos (25)+i sin(25)]}\)
Find each quotient.
- \(\color{blue}{z_1= 10[cos (145)+i sin(145)]}\) and \(\color{blue}{z_2= 5[cos (25)+i sin(25)]}\)
- \(\color{blue}{z_1= 4[cos (150)+i sin(150)]}\) and \(\color{blue}{z_2= 8[cos (90)+i sin(90)]}\)
- \(\color{blue}{z_1 z_2=-4\sqrt{2}}\)
- \(\color{blue}{z_1 z_2=-8-8\sqrt{3}i}\)
- \(\color{blue}{\frac{z_1}{z_2}=-1+\sqrt{3}i}\)
- \(\color{blue}{\frac{z_1}{z_2}=\frac{1}{4}+\frac{\sqrt3}{4}i}\)
Related to This Article
More math articles
- Top 10 ISEE Upper-Level Math Practice Questions
- How to Unravel the Intricacies of Mathematical Relations: A Comprehensive Guide
- How to Solve a Quadratic Equation by Completing the Square?
- A Comprehensive Collection of Free Praxis Math Practice Tests
- Best Computers for Graphic Design in 2024
- 10 Most Common 6th Grade MAP Math Questions
- Best Cheap Laptops for College Students
- How to Find the Greatest Common Factor (GCF)? (+FREE Worksheet!)
- How to Multiply Binomials? (+FREE Worksheet!)
- How to Calculate the Area of Trapezoids? (+FREE Worksheet!)
What people say about "How to Multiply and Divide Complex Numbers in Polar Form? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.