How to Find the Number of Solutions in a System of Equations?
Depending on how the linear equations in a system touch each other, there will be a different number of solutions to the system. Here you get familiarized with how to find the number of solutions in a system of equations.

A system of linear equations usually has a single solution, but sometimes it can have no solution (parallel lines) or infinite solutions (same line).
Related Topics
A step-by-step guide to the number of solutions in a system of equations
A linear equation in two variables is an equation of the form \(ax + by + c = 0\) where \(a, b, c ∈ R\), \(a\), and \(b ≠ 0\). When we consider the system of linear equations, we can find the number of answers by comparing the coefficients of the variables of the equations.
Three types of solutions of a system of linear equations
Consider the pair of linear equations in two variables \(x\) and \(y\):
\(a_1x+b_1y+c_1=0\)
\(a_2x+b_2y+c_2=0\)
Here \(a_1\), \(b_1\), \(c_1\), \(a_2\), \(b_2\), \(c_2\) are all real numbers.
Note that, \(a_1^2 + b_1^2 ≠ 0, a_2^2 + b_2^2 ≠ 0\).
- If \(\frac{a_1}{a_2}≠ \frac{b_1}{b_2}\), then there will be a unique solution. If we plot the graph, the lines will intersect. This type of equation is called a consistent pair of linear equations.
- If \(\frac{a_1}{a_2}= \frac{b_1}{b_2}=\frac{c_1}{c_2}\), then there will be infinitely many solutions. The lines will coincide. This type of equation is called a dependent pair of linear equations in two variables.
- If \(\frac{a_1}{a_2}= \frac{b_1}{b_2}≠\frac{c_1}{c_2}\), then there will be no solution. If we plot the graph, the lines will be parallel. This type of equation is called an inconsistent pair of linear equations.
The Number of Solutions in a System of Equations – Example 1:
How many solutions does the following system have?
\(y=-2x-4\), \(y=3x+3\)
Solution:
First, rewrite the equation to the general form:
\(-2x-y-4=0\)
\(3x-y+3=0\)
Now, compare the coefficients:
\(\frac{a_1}{a_2}\)\(=-\frac{2}{3}\)
\(\frac{b_1}{b_2}\)\(=-\frac{1}{1}=1\)
\(\frac{a_1}{a_2}≠ \frac{b_1}{b_2}\), Hence, this system of equations will have only one solution.
Exercises for the Number of Solutions in a System of Equations
Find the number of solutions in each system of equations.
- \(\color{blue}{2x\:+\:3y\:-\:11\:=\:0,\:3x\:+\:2y\:-\:9\:=\:0}\)
- \(\color{blue}{y=\frac{10}{3}x+\frac{9}{7},\:y=\frac{1}{8}x-\frac{3}{4}}\)
- \(\color{blue}{y=\frac{8}{5}x+2,\:y=\frac{8}{5}x+\frac{5}{2}}\)
- \(\color{blue}{y=-x+\frac{4}{7},\:y=-x+\frac{4}{7}}\)

- \(\color{blue}{one\:solution}\)
- \(\color{blue}{one\:solution}\)
- \(\color{blue}{no\:solution}\)
- \(\color{blue}{infinitely\:many\:solutions}\)
Related to This Article
More math articles
- The Ultimate Pre-Algebra Course (+FREE Worksheets)
- Unlock the Answers: “GED Math for Beginners” Solution Manual
- How to Score 800 on SAT Math?
- Journey to the Stars: How to Solve Circles Word Problems
- 8th Grade SOL Math Worksheets: FREE & Printable
- Top 10 Tips You MUST Know to Retake the FTCE Math Test
- 5th Grade MAAP Math Worksheets: FREE & Printable
- How to Find the Number of Solutions to a System of Equations by Graphing
- Rounding Numbers Up to the Millions
- How to Use Division Properties
What people say about "How to Find the Number of Solutions in a System of Equations? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.