How to Find The Derivative of a Trigonometric Function
Using the limit formula to derive functions, we can uncover the general derivative form of trigonometric functions. This process requires an understanding of trigonometric identities. By applying these identities within the limit framework, it becomes possible to systematically determine the derivatives of various trigonometric functions, enhancing calculus applications.
Derivative of \( sin(x) \) :
\( \begin{align*}
\frac{d}{dx} \sin x &= \lim_{h \to 0} \frac{\sin(x + h) – \sin x}{h} \\
&= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h – \sin x}{h} \\
&= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h – 1}{h} + \cos x \cdot \frac{\sin h}{h}\right) \\
&= \sin x \cdot \lim_{h \to 0} \frac{\cos h – 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h} \\
&= \sin x \cdot 0 + \cos x \cdot 1 \\
&= \cos x
\end{align*}\)
So the derivative of \(sin (x)\) , is \(cos (x)\). Now, using chain rule, we can have:
\( sin(f(x))=cos (f(x))×f’ (x) \)
Derivative of \(cos (x) \):
Almost the same procedure can be used to find the derivative of \( cos (x) \) :
\(\begin{align*}
\frac{d}{dx} \cos x &= \lim_{h \to 0} \frac{\cos(x + h) – \cos x}{h} \\
&= \lim_{h \to 0} \frac{\cos x \cos h – \sin x \sin h – \cos x}{h} \\
&= \lim_{h \to 0} \left(\cos x \cdot \frac{\cos h – 1}{h} – \sin x \cdot \frac{\sin h}{h}\right) \\
&= \cos x \cdot \lim_{h \to 0} \frac{\cos h – 1}{h} – \sin x \cdot \lim_{h \to 0} \frac{\sin h}{h} \\
&= \cos x \cdot 0 – \sin x \cdot 1 \\
&= -\sin x
\end{align*}\)
Derivative of \(tan (x) \) and \(cot (x) \):
Now we could do the same thing for tangent and cotangent, but it would be easier to use quotient rule and find them using \( \tan x = \frac{\sin x}{\cos x} \) and \( \cot x = \frac{\cos x}{\sin x} \):
\( \frac{d}{dx} \tan x = \frac{d}{dx} \left( \frac{\sin x}{\cos x} \right) = \frac{\cos x \cdot \cos x – \sin x \cdot (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x \)
And:
\( \frac{d}{dx} \cot x = \frac{d}{dx} \left( \frac{\cos x}{\sin x} \right) = \frac{\sin x \cdot (-\sin x) – \cos x \cdot \cos x}{\sin^2 x} = \frac{-\sin^2 x – \cos^2 x}{\sin^2 x} = \frac{-1}{\sin^2 x} = -\csc^2 x \)
Related to This Article
More math articles
- Top 10 6th Grade OST Math Practice Questions
- How to Find the Perimeter of Right-Angled Triangle?
- 10 Most Common 3rd Grade PSSA Math Questions
- The Ultimate 7th Grade MEA Math Course (+FREE Worksheets)
- Best Free Apps That Solve Math Problems for You
- Best Blue Light Glasses for Teachers and Students
- Top 10 Tips to ACE the PSAT/NMSQT Math Test
- Full-Length SSAT Lower Level Practice Test-Answers and Explanations
- 8th Grade MEAP Math FREE Sample Practice Questions
- How to Solve Conditional and Binomial Probabilities?
What people say about "How to Find The Derivative of a Trigonometric Function - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.