How to Evaluate Recursive Formulas for Sequences
To specify a sequence, like any other function, we specify its domain and rule.
In general terms, the sequence rule is called sequence general sentence.
The general statement of a sequence is actually a rule through which each member of the domain corresponds to a member of the range set, that is, the general statement produces the statements of the sequence for each value of changes.
The general sentence of a sequence is represented by the symbol \(a_n\).
Evaluating the recursive formula of a sequence uses the recursive relation and the initial value(s) to find the value of each expression in the sequence.
To better understand this issue, let’s use an example. Consider the recursive formula for the sequence {\(a_n\)} where the recursive relation \(a_n=a_{(n-1)}+4\) and the initial value \(a_1 = 2\).
To find \(a_2\), put \(n=2\) and \(a_1=2\) into the recursive relation: \(a_2 = a_{(2-1)}+4=a_1+2=2+4=6\)
We continue the same process to find the next terms:
\(a_3 =a_{(3-1)}+4=a_2+2=6+4=10\)
\(a_4= a_{(4-1)}+4=a_3+2 =10+4=14\)
\(a_5=a_{(5-1)}+4=a_4+2=14+4=18\)
Therefore, the order of evaluations will be as follows: {\(2, 6, 10, 14, 18\)}.
Important note: In some cases, evaluating the recursive formula for large values of n may be impractical because it requires a lot of time or computing power.
Related to This Article
More math articles
- How to Unravel Constant and Identity Functions
- 6th Grade KAP Math Worksheets: FREE & Printable
- 5 Best CBEST Math Study Guides
- Pie Graphs
- 10 Most Common 3rd Grade Common Core Math Questions
- Full-Length HiSET Math Practice Test
- Top 10 Tips You MUST Know to Retake the ASTB-E Math
- How to Use Strip Models to Identify Equivalent Expressions?
- Getting a Math Degree: Hacks to Make Your Life Easier
- How to Prepare for the TSI Math Test?
What people say about "How to Evaluate Recursive Formulas for Sequences - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.