Tri-Fractional Operations: How to Add and Subtract Three Fractions with Different Denominators
When faced with the task of adding or subtracting three fractions with different denominators, it might seem like a complex puzzle. However, with a systematic approach, this puzzle can be solved with ease.

In this guide, we’ll walk you through the steps to add or subtract three fractions, even when they have different denominators.
Step-by-step Guide to Add and Subtract Three Fractions with Different Denominators:
1. Basics of Fractions:
Recall that a fraction consists of a numerator (top number) and a denominator (bottom number). The denominator indicates the total number of equal parts, while the numerator tells us how many of those parts we’re considering.
2. Identifying Different Denominators:
If the fractions you’re working with don’t have the same denominator, they have different denominators. For instance, in the fractions \(\frac{1}{2}\), \(\frac{3}{4}\), and \(\frac{5}{6}\), the denominators 2, 4, and 6 are all different.
3. Finding the Least Common Denominator (LCD):
The LCD is the smallest number into which all the denominators can divide. This ensures that the fractions are of comparable sizes.
4. Adjusting Each Fraction to the LCD:
Multiply the numerator and denominator of each fraction by the necessary factor to achieve the LCD.
5. Performing the Operation:
With the same denominator in place, either add or subtract the numerators of the fractions to get the final result.
Example 1 (Addition):
Add \(\frac{1}{3}\), \(\frac{1}{4}\), and \(\frac{1}{5}\).
Solution:
The LCD for 3, 4, and 5 is 60. Adjusting the fractions:
– \(\frac{1}{3}\) becomes \(\frac{20}{60}\).
– \(\frac{1}{4}\) becomes \(\frac{15}{60}\).
– \(\frac{1}{5}\) becomes \(\frac{12}{60}\).
Adding them up, the result is \(\frac{47}{60}\).
The Absolute Best Book for 5th Grade Students
Example 2 (Subtraction):
Subtract \(\frac{1}{6}\) and \(\frac{1}{8}\) from \(\frac{1}{4}\).
Solution:
The LCD for 6, 8, and 4 is 24. Adjusting the fractions:
– \(\frac{1}{6}\) becomes \(\frac{4}{24}\).
– \(\frac{1}{8}\) becomes \(\frac{3}{24}\).
– \(\frac{1}{4}\) becomes \(\frac{6}{24}\).
Subtracting, the result is \(\frac{6 – 4 – 3}{24} = \(\frac{-1}{24}\).
Practice Questions:
1. Add \(\frac{1}{7}\), \(\frac{2}{9}\), and \(\frac{3}{11}\).
2. Subtract \(\frac{2}{8}\) and \(\frac{3}{12}\) from \(\frac{1}{6}\).
3. Add \(\frac{1}{10}\), \(\frac{2}{15}\), and \(\frac{3}{20}\).
A Perfect Book for Grade 5 Math Word Problems!

Answers:
1. \(\frac{293}{693}\)
2. \(\frac{1}{24}\)
3. \(\frac{11}{30}\)
The Best Math Books for Elementary Students
Related to This Article
More math articles
- 5th Grade STAAR Math Practice Test Questions
- The Quotient Rule: Not Just Dividing Derivatives But Simple Enough
- 4th Grade LEAP Math Worksheets: FREE & Printable
- Types of Graphs
- Top 5 Best Math YouTube Channels for High School Students
- Ratio, Proportion and Percentages Puzzle – Challenge 25
- What Does the STAAR Test Stand For?
- A Complete Exploration of Integration by Parts
- 6th Grade IAR Math Practice Test Questions
- A Deep Dive into the Chapters of the Book: Pre-Algebra for Beginners
What people say about "Tri-Fractional Operations: How to Add and Subtract Three Fractions with Different Denominators - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.