Half-Angle Identities
To find the trigonometric ratios of half of the standard angles, we use half-angle formulas. In this step-by-step guide, you will learn more about the half-angle formulas.
[include_netrun_products_block from-products="product/6-south-carolina-sc-ready-grade-3-math-practice-tests/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{url}/?ajax-add-to-cart={id}" product-item-button-custom-url-if-not-salable="{productUrl} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"]
Related Topics
Step-by-step guide to half-angle identities
The half angle formulas are derived from double angle formulas and are expressed in terms of half angles such as \(\frac{\theta }{2}, \frac{x}{2}, \frac{A}{2}\). Half-angle formulas are used to find the exact values of trigonometric ratios of angles such as \(22.5°\) (which is half of the standard angle of \(45°\)), \(15°\) (which is half of the standard angle of \(30°\)).
Here is a list of important half-angle formulas:
- \(\color{blue}{sin\:\left(\frac{A}{2}\right)=\pm \sqrt{\frac{1-\:cos\:A}{2}}}\)
- \(\color{blue}{cos\:\left(\frac{A}{2}\right)=\pm \sqrt{\frac{1+\:cos\:A}{2}}}\)
- \(\color{blue}{tan\:\left(\frac{A}{2}\right)=\pm \sqrt{\frac{1-\:cos\:A}{1+cos\:A}}=\frac{sin\:A}{1+cos\:A}=\frac{1-cos\:A}{sin\:A}}\)
Half-Angle Identities – Example 1:
Find \(sin\:15^{\circ }\) using a half-angle formula.
Solution:
Since \(15^{\circ }=\frac{30^{\circ }}{2}\), we can use this formula: \(sin\:\left(\frac{A}{2}\right)=\pm \sqrt{\frac{1-\:cos\:A}{2}}\)
\(sin \frac{30^{\circ }}{2}=\sqrt{\frac{1-\:cos\:30^{\circ }}{2}}\)
\(=\sqrt{\frac{1-\sqrt{\frac{3}{2}}}{2}}\)
\(=\sqrt{\frac{\frac{2-\sqrt{3}}{2}}{2}}\)
\(=\sqrt{\frac{2-\sqrt{3}}{4}}\)
\(=\frac{\sqrt{2-\sqrt{3}}}{2}\)
we used the positive root because \(sin\:15^{\circ }\) is positive.
Exercises for Half-Angle Identities
Find each value using a half-angle formula.
- \(\color{blue}{sin\:165^{\circ }}\)
- \(\color{blue}{tan\:\frac{\pi }{8}}\)
- \(\color{blue}{sin\:67.5^{\circ }}\)
- \(\color{blue}{tan\:\frac{7\pi }{8}}\)
- \(\color{blue}{\frac{\sqrt{6}-\sqrt{2}}{4}}\)
- \(\color{blue}{\sqrt{2}-1}\)
- \(\color{blue}{\frac{\sqrt{2+\sqrt{2}}}{2}}\)
- \(\color{blue}{1-\sqrt{2}}\)
Related to This Article
More math articles
- Infinitely Close But Never There
- Logistic Models And Their Use: Complete Explanation, Examples And More
- How to Classify Polygons: A Step-by-Step Guide to Shape Identification
- Overview of the CLEP College Algebra Test
- Top 10 HSPT Math Prep Books (Our 2023 Favorite Picks)
- Top 10 8th Grade MCAS Math Practice Questions
- Count Vertices, Edges, and Faces
- Using Number Line to Graph Percentages
- Top 10 ATI TEAS 7 Math Practice Questions
- 5th Grade RICAS Math Worksheets: FREE & Printable

















What people say about "Half-Angle Identities - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.