How to Graph the Cosecant Function?
The cosecant function is the reciprocal of the trigonometric function sine. In this guide, you will learn more about the graph of the cosecant function.
A step-by-step guide to graphing the cosecant function
The cosecant function is the reciprocal of the trigonometric function \(sin\). Since the cosecant function is the reciprocal of the \(sin\) function, we can write its formula as:
\(\color{blue}{csc (\theta)=\frac{Hypotenuse}{opposite\: side}=\frac{1}{sin\:\theta}}\)
\(cosec x\) is defined for all real numbers except for values where \(sin x\) is equal to zero. Therefore, we have vertical asymptotes at points where \(csc x\) is not defined. Also, using the values of \(sin x\), we have \(y=csc x\) as:
- When \(x = 0\), \(sin x = 0\) \(\rightarrow\) \(csc x =\) not defined
- When \(x = \frac{\pi }{6}\), \(sin x = \frac{1}{2}\)\(\rightarrow\) \(csc x = 2\)
- When \(x =\frac{\pi }{4}\), \(sin x=\frac{1}{\sqrt{2}}\)\(\rightarrow\) \(csc x = \sqrt{2}\)
- When \(x =\frac{\pi }{3}\), \(sin x= \frac{\sqrt{3}}{2}\)\(\rightarrow\) \(csc x = \frac{2}{\sqrt{3}}\)
- When \(x =\frac{\pi }{2}\), \(sin x = 1\)\(\rightarrow\) \(csc x=1\)
Therefore, by drawing the above points on a graph and connecting them together, we have the cosecant graph as follows:
Related to This Article
More math articles
- How to Compare Rational Numbers
- The Consistent Player in Mathematics: How to Understand the Constant Rate of Change
- FREE ISEE Middle Level Math Practice Test
- Best Laptop Tables and Carts for online teaching
- Number Properties Puzzle – Challenge 21
- 8th Grade OST Math Worksheets: FREE & Printable
- How to Use Lattice Multiplication Method
- How to Multiply Binomials? (+FREE Worksheet!)
- Calculations to Help Curb Your Rising Debt
- Remainder and Factor Theorems
What people say about "How to Graph the Cosecant Function? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.