Fundamental Trigonometric Identities
Trigonometric identities are equations that relate various trigonometric functions and are true for any variable value in the domain. In this post, you can learn fundamental trigonometric identities.

A step-by-step guide to fundamental trigonometric identities
The basic trigonometric identities or fundamental trigonometric identities are those trigonometric functions that are true every time for the variables.
The following equations are eight of the most basic and important trigonometric identities. These equations are true for any angle. Countless additional identities can be formed from them. These eight things should be kept in mind.
- \(\color{blue}{cot\left(θ\right)=\frac{cos\:\left(\theta \right)}{sin\:\left(\theta \right)}}\)
- \(\color{blue}{tan\:\left(\theta \right)=\frac{sin\:\left(\theta \right)}{cos\:\left(\theta \right)}}\)
- \(\color{blue}{cot\left(θ\right)=\frac{1}{tan\:\left(\theta \right)}}\)
- \(\color{blue}{sec\left(θ\right)=\frac{1}{cos\:\left(\theta \right)}}\)
- \(\color{blue}{csc\left(θ\right)=\frac{1}{sin\:\left(\theta \right)}}\)
- \(\color{blue}{\left(sin\left(θ\right)\right)^2+\left(cos\left(θ\right)\right)^2=1}\)
- \(\color{blue}{1+\left(tan\left(θ\right)\right)^2=\left(sec\left(θ\right)\right)^2\:\:}\)
- \(\color{blue}{1+\left(cot\left(θ\right)\right)^2=\left(csc\left(θ\right)\right)^2}\)
Related to This Article
More math articles
- Top 10 3rd Grade Common Core Math Practice Questions
- Top 10 Tips to Overcome SSAT Math Anxiety
- Long Division using 1 Number
- Complete Guide to Understanding Deductive Reasoning: Principles and Applications
- Top 10 6th Grade STAAR Math Practice Questions
- FREE 8th Grade MEAP Math Practice Test
- FREE 7th Grade MCAS Math Practice Test
- How to Solve Conditional and Binomial Probabilities?
- Top 10 Tips for Managing Time Effectively on the ACT Math
- A Comprehensive Look at Average vs Instantaneous Rate of Change
What people say about "Fundamental Trigonometric Identities - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.