How to Find Inverse of a Function? (+FREE Worksheet!)
Since an inverse function essentially undoes the effects of the original function, you need to learn how to use them. Therefore, in this article, we have tried to acquaint you with the method of using inverse functions.

Related Topics
- How to Add and Subtract Functions
- How to Multiply and Dividing Functions
- How to Solve Function Notation
- How to Solve Composition of Functions
Definition of Function Inverses
- An inverse function is a function that reverses another function: if the function \(f\) applied to an input \(x\) gives a result of \(y\), then applying its inverse function \(g\) to \(y\) gives the result \(x\).
\(f(x)=y\) if and only if \(g(y)=x\) - The inverse function of \(f(x)\) is usually shown by \(f^{-1} (x)\).
Examples
Function Inverses – Example 1:
Find the inverse of the function: \(f(x)=2x-1\)
Solution:
First, replace \(f(x)\) with \(y: y=2x-1\), then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x: x=2y-1\), now, solve for \(y: x=2y-1→x+1=2y→\frac{1}{2} x+\frac{1}{2}=y\), Finally replace \(y\) with \(f^{-1} (x): f^{-1} (x)=\frac{1}{2} x+\frac{1}{2}\)
Function Inverses – Example 2:
Find the inverse of the function: \(g(x)=\frac{1}{5} x+3\)
Solution:
First, replace \(g(x)\) with \(y:\) \(y=\frac{1}{5} x+3\), then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x :\)\(x=\frac{1}{5} y+3\) , now, solve for \(y: x=\frac{1}{5} y+3 → x-3=\frac{1}{5} y→5(x-3)=y → 5x-15=y\), Finally replace \(y\) with \(g^{-1}(x) : g^{-1}(x)=5x-15\)
Function Inverses – Example 3:
Find the inverse of the function: \(h(x)=\sqrt{x}+6\)
Solution:
First, replace \(h(x)\) with \(y:\) \(y=\sqrt{x}+6\), then, replace all \(x^{‘}s\) with y and all \(y^{‘}s\) with \(x : x=\sqrt{y}+6\), now, solve for \(y :\) \(x=\sqrt{y}+6\) → \(x-6=\sqrt{y}→(x-6)^2=\sqrt{y}^2→x^2-12x+36=y\) , Finally replace \(y\) with \(h^{-1}(x): h^{-1} (x)=x^2-12x+36\)
Function Inverses – Example 4:
Find the inverse of the function: \(g(x)=\frac{x+5}{4}\)
Solution:
First, replace \(g(x)\) with \(y :\) \(y=\frac{x+5}{4}\) , then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x :\) \(x=\frac{y+5}{4} \), now, solve for \(y:\) \(x=\frac{y+5}{4} \) → \(4x=y+5→4x-5=y\), Finally replace \(y\) with \( g^{-1}(x) : g^{-1}(x)=4x-5\)
Exercises for Function Inverses
Find the inverse of each function.
- \(\color{blue}{f(x)=\frac{1}{x}-3}\)
\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{g(x)=2x^3-5}\)
\(\color{blue}{g^{-1} (x)=}\)________ - \(\color{blue}{h(x)=10x}\)
\(\color{blue}{h^{-1} (x)=}\)________ - \(\color{blue}{f(x)=\sqrt{x}-4}\)
\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{f(x)=3x^2+2}\)
\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{h(x)=22x}\)
\(\color{blue}{h^{-1} (x)=}\)________

- \(\color{blue}{\frac{1}{x+3}}\)
- \(\color{blue}{\sqrt[3]{\frac{x+5}{2}}}\)
- \(\color{blue}{\frac{x}{10}}\)
- \(\color{blue}{x^2+8x+16}\)
- \(\color{blue}{\sqrt{\frac{x-2}{3}}}\), \(\color{blue}{-\sqrt{\frac{x-2}{3}}}\)
- \(\color{blue}{\frac{x}{22}}\)
Related to This Article
More math articles
- What Does the STAAR Test Stand For?
- Which Test Is Better for You; GED, TASC, or HiSET? Find Out Now
- 4th Grade MCAS Math Practice Test Questions
- Harnessing Properties: How to Add Three Fractions or Mixed Numbers with Ease
- The Ultimate Keystone Algebra 1 Course (+FREE Worksheets)
- How to Find Equation of a Circle? (+FREE Worksheet!)
- How tо Buу thе Right Lарtор: A Stер-bу-Stер Guide
- A Comprehensive Collection of Free TASC Math Practice Tests
- Top 10 Praxis Core Math Practice Questions
- How to Simplify Radical Expressions Involving Fractions?
What people say about "How to Find Inverse of a Function? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.