How to Find Inverse of a Function? (+FREE Worksheet!)
Since an inverse function essentially undoes the effects of the original function, you need to learn how to use them. Therefore, in this article, we have tried to acquaint you with the method of using inverse functions.
Related Topics
- How to Add and Subtract Functions
- How to Multiply and Dividing Functions
- How to Solve Function Notation
- How to Solve Composition of Functions
Definition of Function Inverses
- An inverse function is a function that reverses another function: if the function \(f\) applied to an input \(x\) gives a result of \(y\), then applying its inverse function \(g\) to \(y\) gives the result \(x\).
\(f(x)=y\) if and only if \(g(y)=x\) - The inverse function of \(f(x)\) is usually shown by \(f^{-1} (x)\).
Examples
Function Inverses – Example 1:
Find the inverse of the function: \(f(x)=2x-1\)
Solution:
First, replace \(f(x)\) with \(y: y=2x-1\), then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x: x=2y-1\), now, solve for \(y: x=2y-1→x+1=2y→\frac{1}{2} x+\frac{1}{2}=y\), Finally replace \(y\) with \(f^{-1} (x): f^{-1} (x)=\frac{1}{2} x+\frac{1}{2}\)
Function Inverses – Example 2:
Find the inverse of the function: \(g(x)=\frac{1}{5} x+3\)
Solution:
First, replace \(g(x)\) with \(y:\) \(y=\frac{1}{5} x+3\), then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x :\)\(x=\frac{1}{5} y+3\) , now, solve for \(y: x=\frac{1}{5} y+3 → x-3=\frac{1}{5} y→5(x-3)=y → 5x-15=y\), Finally replace \(y\) with \(g^{-1}(x) : g^{-1}(x)=5x-15\)
Function Inverses – Example 3:
Find the inverse of the function: \(h(x)=\sqrt{x}+6\)
Solution:
First, replace \(h(x)\) with \(y:\) \(y=\sqrt{x}+6\), then, replace all \(x^{‘}s\) with y and all \(y^{‘}s\) with \(x : x=\sqrt{y}+6\), now, solve for \(y :\) \(x=\sqrt{y}+6\) → \(x-6=\sqrt{y}→(x-6)^2=\sqrt{y}^2→x^2-12x+36=y\) , Finally replace \(y\) with \(h^{-1}(x): h^{-1} (x)=x^2-12x+36\)
Function Inverses – Example 4:
Find the inverse of the function: \(g(x)=\frac{x+5}{4}\)
Solution:
First, replace \(g(x)\) with \(y :\) \(y=\frac{x+5}{4}\) , then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x :\) \(x=\frac{y+5}{4} \), now, solve for \(y:\) \(x=\frac{y+5}{4} \) → \(4x=y+5→4x-5=y\), Finally replace \(y\) with \( g^{-1}(x) : g^{-1}(x)=4x-5\)
Exercises for Function Inverses
Find the inverse of each function.
- \(\color{blue}{f(x)=\frac{1}{x}-3}\)
\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{g(x)=2x^3-5}\)
\(\color{blue}{g^{-1} (x)=}\)________ - \(\color{blue}{h(x)=10x}\)
\(\color{blue}{h^{-1} (x)=}\)________ - \(\color{blue}{f(x)=\sqrt{x}-4}\)
\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{f(x)=3x^2+2}\)
\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{h(x)=22x}\)
\(\color{blue}{h^{-1} (x)=}\)________
- \(\color{blue}{\frac{1}{x+3}}\)
- \(\color{blue}{\sqrt[3]{\frac{x+5}{2}}}\)
- \(\color{blue}{\frac{x}{10}}\)
- \(\color{blue}{x^2+8x+16}\)
- \(\color{blue}{\sqrt{\frac{x-2}{3}}}\), \(\color{blue}{-\sqrt{\frac{x-2}{3}}}\)
- \(\color{blue}{\frac{x}{22}}\)
Related to This Article
More math articles
- Metric Units
- 6th Grade RISE Math Worksheets: FREE & Printable
- Fraction Wizardry: How to Multiply Fractions and Whole Numbers
- Overview of Upper-Level SSAT Mathematics Test
- 10 Most Common ASVAB Math Questions
- The Ultimate 6th Grade WVGSA Math Course (+FREE Worksheets)
- FREE 4th Grade PSSA Math Practice Test
- The Ultimate Algebra 2 Course
- Order of Decimals, Mixed Numbers and Fractions
- 4th Grade MCAS Math Worksheets: FREE & Printable
What people say about "How to Find Inverse of a Function? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.