How to Find Mean Absolute Deviation?
The mean absolute deviation is the average deviation of data points from a central point. In this step-by-step guide, you will learn how to find the mean absolute deviation.

To understand the mean of absolute deviation, let us split both words and try to understand their meaning. “Mean” refers to the average of observations, and deviation means departure or variation from a preset standard. Now, we can define mean deviation as the mean distance of each observation from the mean of the data.
A step-by-step guide to finding mean absolute deviation
The mean absolute deviation is the average deviation of data points from a central point. The center point can be the mean, median, mode, or any random point. The average is often considered the center point.
Formula of mean absolute deviation
There are two formulas for finding the mean absolute deviation. One is for ungrouped data and the other is for grouped data.
Let \(x_1\), \(x_2\), …. \(x_n\) be the data set and let \(μ\) be its average of the ungrouped data. And, \(f\) is the frequency of the data point \(x_i\), for the grouped data. The mean absolute deviation formulas for the two types of data are as follows:
Mean absolute deviation for grouped data \(\color{blue}{=\frac{1}{n}\sum _{i=1}^n\:\left|x_i-μ\right|}\)
Mean absolute deviation for ungrouped data \(\color{blue}{=\frac{\sum f\left|x-x_i\right|\:}{\sum f\:}}\)
Finding Mean Absolute Deviation – Example 1:
Find mean absolute deviation for the following data set: \(300, 142, 356, 560, 459, 217, 220\)
Solution:
First, find mean of the data \((μ)=\frac{sum \ of \ the \ data}{total \ number \ of \ data \ entires}\)
\(=\frac{300+142+ 356+ 560+ 459+ 217+ 220}{7}\)
\(=\frac{2254}{7}=322\)
Now, using mean deviation formula: \(\color{blue}{=\frac{1}{n}\sum _{i=1}^n\:\left|x_i-μ\right|}\)
\(=\frac{|300-322|+|142-322|+|356-322|+|560-322|+|459-322|+|217-322|+|220-322|}{7}\)
\(=\frac{|-22|+|-180|+|34|+|238|+|137|+|-105|+|-102|}{7}\)
\(=\frac{22+180+34+238+137+105+102}{7}\)
\(=\frac{818}{7}\)
\(=116.86\)
Exercises for Finding Mean Absolute Deviation
Find the mean absolute deviation of the data.
- \(\color{blue}{86, 93, 88, 85, 89, 95, 85, 83}\)
- \(\color{blue}{29, 24, 15, 29, 41, 35, 65, 49, 46}\)

- \(\color{blue}{3.25}\)
- \(\color{blue}{11.78}\)
Related to This Article
More math articles
- 6th Grade Common Core Math FREE Sample Practice Questions
- Count Lines of Symmetry
- THEA Math Formulas
- 4th Grade Common Core Math Practice Test Questions
- The Ultimate 6th Grade SOL Math Course (+FREE Worksheets)
- How to Write the Standard Form of Linear Equations?
- SSAT Math-Test Day Tips
- Accuplacer Math Worksheets: FREE & Printable
- FREE 6th Grade FSA Math Practice Test
- How to Graph the Cosecant Function?
What people say about "How to Find Mean Absolute Deviation? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.