How to Evaluate Trigonometric Function? (+FREE Worksheet!)
Evaluating Trigonometric Function – Example 1:
Find the exact value of the trigonometric function. \(tan\)\(\frac{4π}{3}\)
Solution:
Rewrite the angles for an \(\frac{4π}{3} \):
\(tan\) \(\frac{4π}{3}=tan \frac{3π+π}{3}=tan(π+\frac{1}{3} π) \)
Use the periodicity of \(tan\): \(tan\)\((x+π.k)= tan (x)\)
\(tan\)\((π+\frac{1}{3} π)=\) \(tan\)\((\frac{1}{3} π)=\sqrt{3} \)
The Absolute Best Books to Ace Pre-Algebra to Algebra II
Evaluating Trigonometric Function – Example 2:
Find the exact value of the trigonometric function. \(cos\) \(270^\circ\)
Solution:
Write \(cos\) \((270^\circ)\) as \(cos\) \((180^\circ+90^\circ)\). Recall that \(cos180^\circ=-1,cos 90^\circ =0\)
The reference angle of \(270^\circ\) is \(90^\circ\). Therefore, \(cos\) \(270^\circ=0\)
Evaluating Trigonometric Function – Example 3:
Find the exact value of the trigonometric function. \(cos\) \(225^\circ\)
Solution:
Write \(cos\) \((225^\circ)\) as \(cos\) \((180^\circ+45^\circ)\). Recall that \(cos\)\(180^\circ=-1\), \(cos\)\(45^\circ =\frac{\sqrt{2}}{2}\)
\(225^\circ\) is in the third quadrant and \(cos\) is negative in the quadrant \(3\). The reference angle of \(225^\circ\) is \(45^\circ\). Therefore, \(cos\) \(225^\circ=-\frac{\sqrt{2}}{2}\)
The Best Math Book to Help You Ace the Math Test
Evaluating Trigonometric Function – Example 4:
Find the exact value of the trigonometric function. \(tan\) \(\frac{7π}{6}\)
Solution:
Rewrite the angles for \(tan\) \( \frac{7π}{6} \):
\(tan\) \(\frac{7π}{6}=\) \(tan\) \((\frac{6π+π}{6})=tan(π+\frac{1}{6} π) \)
Use the periodicity of \(tan\): \(tan\)\((x+π.k)=\) \(tan\)\((x)\)
\( tan(π+\frac{1}{6} π)=\) \(tan\)\((\frac{1}{6} π)=\frac{\sqrt{3}}{3}\)
Exercises for Evaluating Trigonometric Function
Find the exact value of each trigonometric function.
- \(\color{blue}{cot \ -495^\circ=}\)
- \(\color{blue}{tan \ 405^\circ=}\)
- \(\color{blue}{cot \ 390^\circ=}\)
- \(\color{blue}{cos \ -300^\circ=}\)
- \(\color{blue}{cot \ -210^\circ=}\)
- \(\color{blue}{tan \ \frac{7π}{6}=}\)
Download Evaluating Trigonometric Function Worksheet
- \(\color{blue}{1}\)
- \(\color{blue}{1}\)
- \(\color{blue}{\sqrt{3}}\)
- \(\color{blue}{\frac{1}{2}}\)
- \(\color{blue}{- \sqrt{3} }\)
- \(\color{blue}{\frac{ \sqrt{3} }{3}}\)
The Greatest Books for Students to Ace the Algebra
Related to This Article
More math articles
- Why Do I Need MATLAB Assignments Experts Help and Where One Get It
- How to Multiply Polynomials Using Area Models
- Geometry Puzzle – Challenge 66
- Everything you Need to know about Limits
- Top 10 Tips to Overcome SHSAT Math Anxiety
- Top 10 8th Grade SBAC Math Practice Questions
- How is the TASC Test Scored?
- Different Question Types on the ACT Math Test
- Cracking the Code: How Math is Empowering Students to Solve Real-World Problems in the Digital Age
- Best Laptop for Math Students In 2024





























What people say about "How to Evaluate Trigonometric Function? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.