How to Evaluate Logarithm? (+FREE Worksheet!)
Since learning the rules of logarithms is essential for evaluating logarithms, this blog post will teach you some logarithmic rules for the convenience of your work in evaluating logarithms.

Related Topics
- How to Solve Natural Logarithms
- How to Use Properties of Logarithms
- How to Solve Logarithmic Equations
Necessary Logarithms Rules
- Logarithm is another way of writing exponent. \(\log_{b}{y}=x\) is equivalent to \(y=b^x\).
- Learn some logarithms rules: \((a>0,a≠0,M>0,N>0\), and k is a real number.)
Rule 1: \(\log_{a}{M.N} =\log_{a}{M} +\log_{a}{N}\)
Rule 2: \(\log_{a}{\frac{M}{N}}=\log_{a}{M} -\log_{a}{N} \)
Rule 3: \(\log_{a}{(M)^k} =k\log_{a}{M}\)
Rule 4: \(\log_{a}{a}=1\)
Rule 5:\(\log_{a}{1}=0\)
Rule 6: \(a^{\log_{a}{k}}=k\)
Examples
Evaluating Logarithm – Example 1:
Evaluate: \(\log_{2}{32}\)
Solution:
Rewrite \(32\) in power base form: \(32=2^5\), then:
\(\log_{2}{32}=\log_{2}{(2)^5}\)
Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{2}{(2)^5}=5\log_{2}{(2)}\)
Use log rule: \(\log_{a}{(a)}=1→\log_{2}{(2)} =1.\)
\(5\log_{2}{(2)}=5×1=5\)
Evaluating Logarithm – Example 2:
Evaluate: \(3\log_{5}{125}\)
Solution:
Rewrite \(125\) in power base form: \(125=5^3\), then:
\(\log_{5}{125}=\log_{5}{(5)^3}\)
Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{5}{(5)^3}=3\log_{5}{(5)}\)
Use log rule: \(\log_{a}{(a)} =1→ \log_{5}{(5)} =1.\)
\(3×3\log_{5}{(5)} =3×3=9\)
Evaluating Logarithm – Example 3:
Evaluate: \(\log_{10}{1000}\)
Solution:
Rewrite \(1000\) in power base form: \(1000=10^3\), then:
\(\log_{10}{1000}=\log_{10}{(10)^3}\)
Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{10}{(10)^3}=3\log_{10}{(10)}\)
Use log rule: \(\log_{a}{(a)}=1→\log_{10}{(10)} =1.\)
\(3\log_{10}{(10)}=3×1=3\)
Evaluating Logarithm – Example 4:
Evaluate: \(5\log_{3}{81}\)
Solution:
Rewrite \(81\) in power base form: \(81=3^4\), then:
\(\log_{3}{81}=\log_{3}{(3)^4}\)
Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{3}{(3)^4}=4\log_{3}{(3)}\)
Use log rule: \(\log_{a}{(a)} =1→ \log_{3}{(3)} =1.\)
\(5×4\log_{3}{(3)} =5×4=20\)
Exercises for Evaluating Logarithm
Evaluate Logarithm.
- \(\color{blue}{3\log_{2}{64}}\)
- \(\color{blue}{\frac{1}{2}\log_{6}{36}}\)
- \(\color{blue}{\frac{1}{3}\log_{3}{27}}\)
- \(\color{blue}{\log_{4}{64}}\)
- \(\color{blue}{\log_{1000}{1}}\)
- \(\color{blue}{\log_{620}{620}}\)

- \(\color{blue}{18}\)
- \(\color{blue}{1}\)
- \(\color{blue}{1}\)
- \(\color{blue}{3}\)
- \(\color{blue}{0}\)
- \(\color{blue}{1}\)
The Absolute Best Book for the Algebra Test
Related to This Article
More math articles
- Number Properties Puzzle -Critical Thinking 1
- What Is The Best Calculator For Trigonometry?
- Top 10 Tips You MUST Know to Retake the CBEST Math
- How to Identify Time Patterns
- AFOQT Math Practice Test Questions
- FREE 7th Grade STAAR Math Practice Test
- FREE 4th Grade MCAS Math Practice Test
- Converting Numbers Between Standard and Expanded Forms Up to a Billion
- How to Use Elimination to Solve a System of Equations: Word Problems
- What Kind of Math Learner Is Your Child?
What people say about "How to Evaluate Logarithm? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.