Equivalent Rates
Equivalent ratios show identical values. They can be found by comparison. By comparing two or more ratios with one another, you can find out if they are equivalent or not.
To identify whether two ratios are equivalent or not, you have to write them down as fractions. If they are equal, then so are the ratios.
A step-by-step guide to finding equivalent rates
Equivalent Rates – Examples 1
Solve this proportion for \(x\) to check if these ratios are equivalent.
\(\frac{3}{4}=\frac{6}{x} ,x=_\)
Solution:
Use cross multiplication.
\(\frac{3}{4}=\frac{6}{x} ⇒3×x=6×4⇒3x=24\)
\(x=\frac{24}{3}=8\)
Equivalent Rates – Examples 2
Solve this proportion for \(x\) to check if these ratios are equivalent.
\(\frac{5}{10}=\frac{1}{x},x=_\)
Solution:
Use cross multiplication.
\(\frac{5}{10}=\frac{1}{x} ⇒5×x=1×10⇒5x=10\)
\(x=\frac{10}{5}=2\)
Related to This Article
More math articles
- How to Solve an Absolute Value Inequality?
- Classify Faces of 3–Dimensional Figures
- 5th Grade Ohio’s State Tests Math Worksheets: FREE & Printable
- Introduction to Complex Numbers: Navigating the Realm Beyond the Real
- How to Pass TSI Test: Top Tips and Key Tactics
- How to Use Area Models to Add Fractions with Like Denominators
- How to Find Volume by Spinning: Shell Method
- How to Write a Quadratic Function from Its Vertex and Another Point
- Word Problems Involving Comparing Ratio
- How to Solve Angle Measurements Word Problems
What people say about "Equivalent Rates - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.