Equation of Each Ellipse and Finding the Foci, Vertices, and Co– Vertices of Ellipses
To write the equation of an ellipse, we need the parameters that will be explained in this article.

An Ellipse is a closed curve formed by a plane. There are two types of ellipses: Horizontal and Vertical
- If major axis of an ellipse is parallel to \(x\), its called horizontal ellipse.
- If major axis of an ellipse is parallel to \(y\), its called vertical ellipse.
Step by Step Guide to Find Equation of Ellipses
The standard form of the equation of an Ellipse is:
- Horizontal: \(\color{blue}{\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1}\)
- Vertical: \(\color{blue}{\frac{(x-h)^2}{b^2}+\frac{(y-k)^2}{a^2}=1}\)
The center is: \(\color{blue}{(h, k)}\)
The vertices are: \(\color{blue}{(h+a, k), (h-a, k)}\)
The foci are: \(\color{blue}{(h+c, k), (h-c, k)}\), where \(\color{blue}{c=\sqrt{a^2-b^2}}\)
The Values can be calculated according to the standard form of the equation of ellipses.

Equation of Each Ellipse and Finding the Foci, Vertices, and Co– Vertices of Ellipses – Example 1:
Find the center, vertices, and foci of this ellipse: \(\frac{(x-2)^2}{36}+\frac{(y+4)^2}{16}=1\)
Solution:
The standard form of the equation of an Ellipse is: \(\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1\)
Then, \((h=2, k=-4, a=6, b=4)\).
So, the center is \((2, -4)\).
The vertices are \((h+a, k), (h-a, k) →(8, 4), (-4, 4)\)
Evaluate \(c\): \(c=\sqrt{a^2-b^2}\) \(=\sqrt{36-16}=2\sqrt{5}\)
Then the foci are \((2+2\sqrt{5}, -4)\) and \((2-2\sqrt{5}, -4)\).
Exercises for Equation of Finding the Foci, Vertices, and Co– Vertices of Ellipses
Find the center, vertices, and foci of each ellipse.
- \(\color{blue}{9x^2+4y^2=1}\)
- \(\color{blue}{16x^2+25y^2=100}\)
- \(\color{blue}{25x^2+4y^2+100x-40y=400}\)
- \(\color{blue}{\frac{(x-1)^2}{9}+\frac{y^2}{5}=100}\)

- \(\color{blue}{Center: (0, 0), Vertices: (0,\frac{1}{2}), (0, -\frac{1}{2}), foci: (0, \frac{\sqrt{5}}{6}), (0, -\frac{\sqrt{5}}{6})}\)
- \(\color{blue}{Center: (0, 0), Vertices: (\frac{5}{2}, 0), (-\frac{5}{2}, 0), foci: (\frac{3}{2}, 0), (-\frac{3}{2}, 0)}\)
- \(\color{blue}{Center: (-2, 5), Vertices: (-2,5+5\sqrt{6}), (-2, 5-5\sqrt{6}), foci: (-2, 5+3\sqrt{14}), (-2, 5-3\sqrt{14})}\)
- \(\color{blue}{Center: (1, 0), Vertices: (31, 0), (-29, 0), foci: (21, 0), (-19, 0)}\)
Related to This Article
More math articles
- CLEP College Algebra Formulas
- SIFT Math Formulas
- How to Using Decimals, Grid Models, and Fractions to Represent Percent
- How to Find the Perimeter of Right-Angled Triangle?
- A Comprehensive Collection of FREE ACT Math Practice Tests
- Using Models to Represent Decimal Number Place Value
- The Best CHSPE Math Worksheets: FREE & Printable
- 10 Most Common 8th Grade OST Math Questions
- Top 10 8th Grade OST Math Practice Questions
- Full-Length 7th Grade ACT Aspire Math Practice Test-Answers and Explanations
What people say about "Equation of Each Ellipse and Finding the Foci, Vertices, and Co– Vertices of Ellipses - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.