How to Divide Exponents? (+FREE Worksheet!)
Learn how to divide exponents by using the division property of exponents in a few simple steps.
Related Topics
- How to Solve Powers of Products and Quotients
- How to Multiply Exponents
- How to Solve Negative Exponents and Negative Bases
- How to Solve Zero and Negative Exponents
- How to Solve Scientific Notation
Step by step guide to divide exponents
- For division of exponents use these formulas: \(\color{blue}{\frac{x^a}{x^b} =x^{a–b} , x≠0}\)
\(\color{blue}{\frac{x^a}{x^b} =\frac{1}{x^{ \ b-a}} , x≠0, \frac{1}{x^b} =x^{ \ -b}}\)
The Absolute Best Books to Ace Pre-Algebra to Algebra II
Division Property of Exponents – Example 1:
Divide. \(\frac{4x^{5}}{8x^{2}} =\)
Solution:
First cancel the common factor: \(4→\frac{4x^5}{8x^2}=\frac{x^5}{2x^2}\)
Use Exponent’s rules: \(\color{blue}{\frac{x^a}{x^b} =x^{a–b}}\)
\(\ →\frac{x^5}{x^2 }=x^{5–2}=x^3\)
Then: \(\frac{4x^{5}}{8x^{2}} =\frac{x^3}{2}\)
Division Property of Exponents – Example 2:
Divide. \(\frac{18x^{ \ -6}}{2x^{ \ -3 }}=\)
Solution:
First cancel the common factor: \(2 → \frac{18x^{ \ -6}}{2x^{ \ -3 }}=\frac{9x^{ \ -6}}{x^{ \ -3 }}\)
Use Exponent’s rules: \(\color{blue}{ \frac{x^a}{x^b} =\frac{1}{x^{b-a}} } \)
\(→\frac{x^{-6}}{x^{-3}} =\frac{1}{x^{-3-(-6)}} =\frac{1}{x^{-3+6}} =\frac{1}{x^3} \)
Then: \(\frac{18x^{-6}}{2x^{-3}} =\frac{9}{x^3}\)
Division Property of Exponents – Example 3:
Simplify. \(\frac{4x^3 y}{36x^2 y^ {3}}=\)
Solution:
First cancel the common factor: \(4→\frac{4x^3 y}{36x^2 y^3 }=\frac{x^3 y}{9x^2 y^3 }\)
Use Exponent’s rules: \(\color{blue}{\frac{x^a}{x^b} =x^{a–b}}\)
\(\ →\frac{x^3}{x^2 }=x^{3–2}=x^1=x\) , \(\frac{y}{y^3 }=\frac{1}{y^{3–1} }= \frac{1}{y^{2} }\)
Then: \(\frac{4x^3 y}{36x^2 y^3 }=\frac{x}{9y^2 }\)
The Best Book to Help You Ace Pre-Algebra
Division Property of Exponents – Example 4:
Divide. \(\frac{2x^{-5}}{9x^{-2}} =\)
Solution:
Use Exponent’s rules: \(\color{blue}{ \frac{x^a}{x^b} =\frac{1}{x^{b-a}} } \)
\(→\frac{x^{-5}}{x^{-2} }=\frac{1}{x^{-2-(-5)}} =\frac{1}{x^{-2+5}} =\frac{1}{x^3}\)
Then: \(\frac{2x^{-5}}{9x^{-2}} =\frac{2}{9x^3 }\)
Exercises for Dividing Property of Exponents
Simplify.
- \(\color{blue}{\frac{5^5}{5}} \\\ \)
- \(\color{blue}{\frac{3}{3^5 }} \\\ \)
- \(\color{blue}{\frac{12x^4}{15x^7 y^9 }} \\\ \)
- \(\color{blue}{\frac{12yx^4}{10yx^8}} \\\ \)
- \(\color{blue}{\frac{16x^4 y}{9x^8 y^2}} \\\ \)
- \(\color{blue}{\frac{5x^8}{20x^8 }} \\\ \)
Download Division Property of Exponents Worksheet
- \(\color{blue}{5^4}\)
- \(\color{blue}{\frac{1}{3^4}} \\\ \)
- \(\color{blue}{\frac{4}{5x^3 y^9 }} \\\ \ \)
- \(\color{blue}{\frac{6}{5x^4 }} \\\ \ \)
- \(\color{blue}{\frac{16}{9x^4 y}} \\\ \ \)
- \(\color{blue}{\frac{1}{4}} \\\ \ \)
The Greatest Books for Students to Ace the Algebra
Related to This Article
More math articles
- Let’s Do the Math on Tesla’s Electric Cars
- The Ultimate MTTC Mathematics (Elementary) (089) Course (+FREE Worksheets & Tests)
- Top 10 Tips to ACE the Praxis Core Math Test
- Geometry Puzzle – Challenge 61
- Full-Length 7th Grade STAAR Math Practice Test-Answers and Explanations
- How to Determine Limits Involving Floor and Absolute Value Functions
- Algebra Puzzle – Challenge 46
- How to Find the Measures of Central Tendency? (+FREE Worksheet!)
- Full-Length ISEE Middle Level Math Practice Test
- Praxis Core Math FREE Sample Practice Questions
What people say about "How to Divide Exponents? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.