Derivative of Logarithmic Functions: A Hard Task Made Easy
Derivatives of logarithmic functions involve understanding how the logarithm's rate of change relates to its base and argument. For the natural logarithm \( ln(x) \) , the derivative is \( \frac{1}{x} \). When dealing with more complex logarithmic expressions, the chain rule is often employed, especially if the logarithm's argument is a function itself, not just a simple variable.
The formulas to find the derivative of logarithmic functions:
Logarithm of \( x \) to the base of \( a \) :
The derivative of \( \log_a x \) : \( \left(\log_a x\right)’ = \frac{1}{x \ln a} \)
Example:
\( \text{Given function: } \log_2 x \)
\( \text{Derivative: } \left(\log_2 x\right)’ = \frac{1}{x \ln 2} \)
Logarithm of \( f(x) \) to the base of \( a \):
The derivative of \( \log_a f(x) \) : \( \left(\log_a f(x)\right)’ = \frac{f'(x)}{f(x) \ln a} \)
Example:
\( \text{Given function: } \log_3 (x^2 + 1) \)
\( \text{Derivative: } \left(\log_3 (x^2 + 1)\right)’ = \frac{2x}{(x^2 + 1) \ln 3} \)
Natural logarithm of \( x \):
The derivative of \( \ln x \) : \( \left(\ln x\right)’ = \frac{1}{x} \)
Example:
\( \text{Given function: } \ln (3x) \)
\( \text{Derivative: } \left(\ln (3x)\right)’ = \frac{1}{3x} \cdot 3 = \frac{1}{x} \)
Natural logarithm of \( f(X) \):
The derivative of \( \ln f(x) \) : \( \left(\ln f(x)\right)’ = \frac{f'(x)}{f(x)} \)
Example:
\( \text{Given function: } \ln (x^3 + 2x) \)
\( \text{Derivative: } \left(\ln (x^3 + 2x)\right)’ = \frac{3x^2 + 2}{x^3 + 2x} \)
Examples:
Let’s consider a complex example:
\( \text{Find the derivative of } h(x) = \ln(x) \cdot \log_2(x^2 + 1) \)
1. Apply the product rule
\( h'(x) = f'(x)g(x) + f(x)g'(x) \)
2. Define \( f'(x) \) and \( g'(x) \)
\( f(x) = \ln(x) \rightarrow f'(x) = \frac{1}{x} \)
\( g(x) = \log_2(x^2 + 1) \rightarrow g'(x) = \frac{2x}{(x^2 + 1) \ln 2} \)
3. Combine using the product rule
\( h'(x) = \frac{1}{x} \cdot \log_2(x^2 + 1) + \ln(x) \cdot \frac{2x}{(x^2 + 1) \ln 2} \)
Here is another example involving radicals:
\( \text{Find the derivative of } h(x) = \sqrt{\ln x} \cdot \log_2(x^3 + 1) \)
1. Apply the product rule
\( h'(x) = f'(x)g(x) + f(x)g'(x) \)
2. Define \( f'(x) \) and \( g'(x) \)
\( f(x) = \sqrt{\ln x} \rightarrow f'(x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} \)
\( g(x) = \log_2(x^3 + 1) \rightarrow g'(x) = \frac{3x^2}{(x^3 + 1) \ln 2} \)
3. Combine using the product rule
\( h'(x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} \cdot \log_2(x^3 + 1) + \sqrt{\ln x} \cdot \frac{3x^2}{(x^3 + 1) \ln 2} \)
Derivative of exponential functions
Here are the formula for finding the derivative of exponential functions.
Real number \( a \) to the power of \( x \): \( a^x \)
\( \left(a^x\right)’ = a^x \ln a \)
Example:
\( \text{Given function: } 5^{2x + 3} \)
\( \text{Derivative: } \left(5^{2x + 3}\right)’ = 5^{2x + 3} \ln 5 \cdot 2 \)
Real number \( a \) to the power of \( f(x) \): \( a^x \)
\( \left(a^{f(x)}\right)’ = a^{f(x)} \ln a \cdot f'(x) \)
Example:
\( \text{Given function: } 4^{\sin x} \)
\( \text{Derivative: } \left(4^{\sin x}\right)’ = 4^{\sin x} \ln 4 \cdot \cos x \)
\( e \) to the power of \( x \): \( e^x \)
\( \left(e^x\right)’ = e^x \)
Example:
\( \text{Given function: } e^{3x – 2} \)
\( \text{Derivative: } \left(e^{3x – 2}\right)’ = e^{3x – 2} \cdot 3 \)
\( e \) to the power of \( f(x) \): \( e^{f(x)} \)
\( \left(e^{f(x)}\right)’ = e^{f(x)} \cdot f'(x) \)
Example:
\( \text{Given function: } e^{\sqrt{x}} \)
\( \text{Derivative: } \left(e^{\sqrt{x}}\right)’ = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} \)
Here is one more example:
\( \text{Find the derivative of } h(x) = e^{2x} \cdot \ln(x^2) \)
1. Apply the product rule
\( h'(x) = e^{2x} \cdot (\ln(x^2))’ + (e^{2x})’ \cdot \ln(x^2) \)
2. Define the derivatives
\( (\ln(x^2))’ = \frac{2}{x} \)
\( (e^{2x})’ = e^{2x} \cdot 2 \)
3. Combine using the product rule
\( h'(x) = e^{2x} \cdot \frac{2}{x} + e^{2x} \cdot 2 \cdot \ln(x^2) \)
Related to This Article
More math articles
- Convert Rational Numbers to a Fraction
- Decimals in Action: How to Master Multiplication and Division
- FREE ATI TEAS 7 Math Practice Test
- Overview of the TASC Mathematics Test
- 8th Grade FSA Math Practice Test Questions
- Unit Prices with Decimals and Fractions
- What is a Good PSAT Score?
- How is the ASVAB Test Scored?
- How to Decipher Limits and Function Values
- Math Education in the Digital Age: Techniques for Today’s Classroom
What people say about "Derivative of Logarithmic Functions: A Hard Task Made Easy - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.