How to Approximate Irrational Numbers? (+FREE Worksheet!)
This article teaches you how to Approximate Irrational Numbers in a few simple steps.
Related Topics
- How to Simplify Radical Expressions
- How to Solve Radicals
- How to Solve Radical Equations
- How to Rationalize Radical Expressions
Step by step guide to Approximate Irrational Numbers
Numbers that cannot be written as a fraction are called irrational. An irrational number is a non-repeating, non-terminating decimal and it does not have an exact place on the number line. Square roots of numbers that are not perfect squares are irrational.
We use approximations of irrational numbers to locate them approximately on a number line diagram.
Since the irrational numbers are radical numbers that are not a perfect square, to approximate them, follow the steps below
- Step 1: First, we need to find the two consecutive perfect squares that the number is between. if is our number, we can do this by writing this inequality: \(a^2< x <b^2\)
- Step 2: Take the square root of each number:\(\sqrt{a^2}< \sqrt{x} <\sqrt{b^2}\)
- Step 3: Simplify the square roots of perfect squares:\(a< \sqrt{x} <b\), then, \(\sqrt{x}\) is between \(a\) and \(b\).
- Step 4: To find a better estimate, choose some numbers between \(a\) and \(b\).
Approximating Irrational Numbers – Example 1:
Find the approximation of \(\sqrt{22}\)
Solution:
since \(\sqrt{22}\) is not a perfect square, is irrational. To approximate \(\sqrt{22}\) first, we need to find the two consecutive perfect squares that \(22\) is between. We can do this by writing this inequality: \(16< 22 <25\). Now take the square root of each number: \(\sqrt{16}< \sqrt{22} <\sqrt{25}\). Simplify the square roots of perfect squares:
\(4< \sqrt{22} <5\), then, \(\sqrt{22}\) is between \(4\) and \(5\). To find a better estimate, choose some numbers between \(4\) and \(5\) Let’s choose \(4.6\), \(4.7\) and \(4.8\).
\(4.6^2=21.16\), \(4.7^2=22.09\), \(4.8^2=23.04\), \(4.7\) is closer to \(22\). Then: \(\sqrt{22}≈4.7\)
Approximating Irrational Numbers – Example 2:
Find the approximation of \(\sqrt{74}\)
Solution:
since \(\sqrt{74}\) is not a perfect square, is irrational. To approximate \(\sqrt{74}\) first, we need to find the two consecutive perfect squares that \(74\) is between. We can do this by writing this inequality: \(64< 74 <81\). Now take the square root of each number: \(\sqrt{64}< \sqrt{74} <\sqrt{81}\). Simplify the square roots of perfect squares:
\(8< \sqrt{74} <9\), then, \(\sqrt{74}\) is between \(8\) and \(9\). To find a better estimate, choose some numbers between \(8\) and \(9\) Let’s choose \(8.5\), \(8.6\) and \(8.7\).
\(8.5^2=72.25\), \(8.6^2=73.96\), \(8.7^2=75.69\), \(8.6\) is closer to \(74\). Then: \(\sqrt{74}≈8.6\)
Approximating Irrational Numbers – Example 3:
Find the approximation of \(\sqrt{94}\)
Solution:
since \(\sqrt{94}\) is not a perfect square, is irrational. To approximate \(\sqrt{94}\) first, we need to find the two consecutive perfect squares that \(94\) is between. We can do this by writing this inequality: \(81< 94 <100\). Now take the square root of each number: \(\sqrt{81}< \sqrt{94} <\sqrt{100}\). Simplify the square roots of perfect squares:
\(9< \sqrt{94} <10\), then, \(\sqrt{94}\) is between \(9\) and \(10\). To find a better estimate, choose some numbers between \(9\) and \(10\) Let’s choose \(9.6\), \(9.7\) and \(9.8\).
\(9.6^2=92.16\), \(9.7^2=94.09\), \(9.8^2=96.04\), \(9.7\) is closer to \(94\). Then: \(\sqrt{94}≈9.7\)
Approximating Irrational Numbers – Example 4:
Find the approximation of \(\sqrt{26}\)
Solution:
since \(\sqrt{26}\) is not a perfect square, is irrational. To approximate \(\sqrt{26}\) first, we need to find the two consecutive perfect squares that \(26\) is between. We can do this by writing this inequality: \(25< 26 <36\). Now take the square root of each number: \(\sqrt{25}< \sqrt{26} <\sqrt{36}\). Simplify the square roots of perfect squares:
\(5< \sqrt{26} <6\), then, \(\sqrt{26}\) is between \(5\) and \(6\). To find a better estimate, choose some numbers between \(5\) and \(6\) Let’s choose \(5.1\), \(5.2\) and \(5.3\).
\(5.1^2=26.01\), \(5.2^2=27.04\), \(5.3^2=28.09\), \(5.1\) is closer to \(26\). Then: \(\sqrt{26}≈5.1\)
Exercises for Approximating Irrational Numbers
Find the approximation of each.
- \(\color{blue}{\sqrt{41}}\)
- \(\color{blue}{\sqrt{52}}\)
- \(\color{blue}{\sqrt{59}}\)
- \(\color{blue}{\sqrt{72}}\)
- \(\color{blue}{\sqrt{17}}\)
- \(\color{blue}{\sqrt{10}}\)
- \(\color{blue}{6.4}\)
- \(\color{blue}{7.2}\)
- \(\color{blue}{7.7}\)
- \(\color{blue}{8.5}\)
- \(\color{blue}{4.1}\)
- \(\color{blue}{3.2}\)
Related to This Article
More math articles
- Limits: What Happens When a Function Approaches Infinity
- How much does the CBEST Test Cost?
- How is the SSAT Test Scored?
- The Ultimate CHSPE Math Course (+FREE Worksheets & Tests)
- FREE 4th Grade STAAR Math Practice Test
- Using Diagrams to Model and Solve Equations
- 5th Grade OAA Math Worksheets: FREE & Printable
- The Ultimate 6th Grade WY-TOPP Math Course (+FREE Worksheets)
- 10 Most Common SSAT Upper-Level Math Questions
- 7th Grade MAP Math Worksheets: FREE & Printable
What people say about "How to Approximate Irrational Numbers? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.