Alternating Series
The alternating series test is a type of series test used to determine the convergence of alternating series. In this step-by-step guide, you will learn more about the alternating series.
A step-by-step guide to alternating series
An alternating series is a series in which the terms alternate between positive and negative. The general form of an alternating series is as follows:
\(\color{blue}{\sum \:\left(-1\right)^ka_{k}}\)
Where \(a_{k}\ge 0\) and the first index is arbitrary. It means that the starting term for an alternating series can have any sign.
We can say that an alternating series \([a_k]^\infty_{k=1}\) converges if two conditions exist:
- \(0\le a_{k+1}\le a_k\), for all \(k\ge 1\)
- \(a_k→0\), as \(k→+∞\)
Related to This Article
More math articles
- ATI TEAS 7 Math-Test Day Tips
- How to Break Fractions and Mixed Numbers Apart to Add or Subtract
- Geometry in Action: Crafting the Circumscribed Circle of a Triangle
- SAT Math Formulas
- How to Divide Mixed Numbers? (+FREE Worksheet!)
- Fundamentals of Geometry: The Concept of Lines, Rays, and Angles
- 6th Grade ACT Aspire Math Practice Test Questions
- Top 10 Free Websites for ASVAB Math Preparation
- How to Find Interval Notation
- How to Graph Proportional Relationships and Find the Slope



























What people say about "Alternating Series - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.