Other Topics Puzzle – Challenge 100
A simple math challenge like this one might seem small, but it’s a nice puzzle to challenge even a smart student.
[include_netrun_products_block from-products="product/ssat-middle-level-math-for-beginners/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{url}/?ajax-add-to-cart={id}" product-item-button-custom-url-if-not-salable="{productUrl} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"]
Challenge:
What is the greatest four-digit integer that meets the following three restrictions?
1- All of the digits are different.
2- The greatest digit is the sum of the other three digits.
3- The product of the four digits is divisible by 10 and not equal to zero.
The Absolute Best Book to Challenge Your Smart Student!
The correct answer is 8521.
First, notice rule 3 (The product of the four digits is divisible by 10) tells you that one digit must be 5 and none of them should be 0.
Since we’re looking for the greatest four digit integer we need to start with 9, which is the greatest digit. If the first digit is 9, then all the three other digits should add up to 9.
One digit is 5 and there is no 0. Therefore, there are two possible ways:
5 + 3 + 1 = 9
5 + 2 + 2 = 9
None of these solutions work. Because, in the first one, there is no even number and it’s not divisible by 10. In the second one, digit 2 repeated.
Therefore, 9 is not the first digit. Let’s try 8.
If 8 is the first digit. Then:
5 + 2 + 1 = 8
5 + 3 + 0 = 8
The second one has 0, so the only solution is the first one. The number has digits 8, 5, 2, and 1. The greatest such number is 8521The Best Books to Ace Algebra
Original price was: $27.99.$17.99Current price is: $17.99.
Related to This Article
More math articles
- The Ultimate CBEST Math Formula Cheat Sheet
- Algebra Puzzle – Challenge 51
- How to Unravel the Ties: Relationships Between Decimal Place Values
- How to Use Substitution to Solve a System of Equations: Word Problems
- FREE 7th Grade MEAP Math Practice Test
- How to Find Factors of Numbers?
- How to Solve Perfect Square Trinomial?
- 3rd Grade SBAC Math Practice Test Questions
- The Best Color Printers for Teachers
- What Are the Applications of the Law of Cosines?

















What people say about "Other Topics Puzzle – Challenge 100 - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.