Number Properties Puzzle – Challenge 10
This is a great math challenge related to Number Properties for those who love critical thinking challenges. To solve this problem, you need to use your knowledge of exponents. Let's challenge your brain!

Challenge:
If \(a=2^{6000}, b=3^{4000}\) and \(c=7^{2000}\), which of the following is true?
A- \(a < b < c\)
B- \(c < b < a\)
C- \(a < c < b\)
D- \(c < a < b\)
E- \(b < a < c\)
The Absolute Best Book to Challenge Your Smart Student!

The correct answer is D.
\(a=2^{6000}, b=3^{4000}\) and \(c=7^{2000}\)
Find the \(2000^{th}\) rout of each number:
\(\sqrt[2000]{a}= \sqrt[2000]{2^{6000}} = 2^{\frac{6000}{2000}} = 2^3 = 8\)
\(\sqrt[2000]{b} =\sqrt[2000]{3^{4000}} = 3^{\frac{4000}{2000}} = 3^2 = 9\)
\(\sqrt[2000]{c} = \sqrt[2000]{7^{2000}} = 7^{\frac{2000}{2000}} = 7^1 = 7\)
Therefore: \(c < a < b\)
The Absolute Best Books to Ace Algebra
Related to This Article
More math articles
- How to Do Scaling Whole Numbers by Fractions?
- How to Do Multiple Ways of Fractions Decomposition
- How to Prepare for the Praxis Core Math Test?
- The Mathematicians Who’ve Managed to Outwit Casinos
- How to Organize Data?
- FREE Pre-Algebra Math Practice Test
- How to Find the Volume and Surface Area of Rectangular Prisms? (+FREE Worksheet!)
- Top 10 Tips to ACE the SSAT Math Test
- Algebra Puzzle – Challenge 35
- 10 Most Common ISEE Middle-Level Math Questions
What people say about "Number Properties Puzzle – Challenge 10 - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.