Algebra Puzzle – Challenge 58
This math puzzle practices a wide variety of math skills. You need to use all the basic operator skills you can think of.

Challenge:
Three times of Michael’s money equals \(\frac{2}{3}\) of Jackson’s money. If the sum of their money is $2200, how much money does Michael have?
A- 200
B- 400
C- 1000
D- 1600
E- 1800
The Absolute Best Book to Challenge Your Smart Student!

The correct answer is B.
Let M be Michael’s money and J be Jackson’s money. Therefore:
M + J = 2200 and 3M \(= \frac{2}{3} J →M = \frac{2}{9} J\)
Replace the value of M in the first equation with its value in the second equation.
\(\frac{2}{9} J + J = 2200→ J = 1800\)
\(M = \frac{2}{9} J → M = \frac{2}{9} (1800) = 400\)
Michael has $400.
The Best Books to Ace Algebra
Related to This Article
More math articles
- 8th Grade RICAS Math Worksheets: FREE & Printable
- How to Solve and Graph One-Step Inequalities with Rational Numbers?
- How to Find Even and Odd Functions?
- Unlock the Gateway to Academic Achievement: “OAR Math for Beginners” Comprehensive Solution Manual
- A Comprehensive Collection of Free ALEKS Math Practice Tests
- Best Calculators for CA Exams
- Decimal Dynamics: How to Evaluating Numerical Expressions with Decimals
- How to Solve Word Problems with Four-digit Dividends and Two-digit Divisors
- How to Find Magnitude of Vectors?
- How to Dividing Fractions by Whole Numbers in Recipes!
What people say about "Algebra Puzzle – Challenge 58 - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.